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Thomas J. Sargent¶

May 21, 2019

Abstract

A decision maker constructs a convex set of nonnegative martingales to use as likeli-

hood ratios that represent alternatives that are statistically close to a decision maker’s

baseline model. The set is twisted to include some specific models of interest. Max-

min expected utility over that set gives rise to equilibrium prices of model uncertainty

expressed as worst-case distortions to drifts in a representative investor’s baseline

model. Three quantitative illustrations start with baseline models having exogenous

long-run risks in technology shocks. These put endogenous long-run risks into con-

sumption dynamics that differ in details that depend on how shocks affect returns

to capital stocks. We describe sets of alternatives to a baseline model that generate

countercyclical prices of uncertainty.
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1 Introduction

Our paper is related to one of George Tiao’s many fruitful lines of work, namely, the Box

and Tiao (1977) “canonical correlation” approach to linear time series analysis that antic-

ipated later work on co-integration by time series econometricians and macroeconomists.1

Especially relevant for our paper is Box and Tiao’s use of eigenfunction methods to identify

the most persistent component of a linear vector time series, techniques that Chen et al.

(2009) extended to nonlinear Markov settings. These methods provide ways to identify

“long-run risks,” the topic that we take up in this paper.

Long-run risks are difficult to estimate well. The preferences over intertemporal out-

comes that macro and finance economists typically attribute to decision makers make long-

run risks play an especially important role. We explore settings in which consumers and

investors acknowledge possible misspecifications of their models and adjust their decisions

accordingly. Decision makers’ continuation values are especially sensitive to misspecifi-

cations of those very persistent components, a sensitivity that plays a central role when

we assume that decision makers use robust control theory to cope with their specification

doubts.

Acknowledging that a good model is an approximation means conceding that another

statistically similar alternative models might be better. This paper proposes a new way

to imagine how a decision maker forms that set of alternative models and then uses it to

construct equilibrium asset prices for a class of growth models that feature long-run risks.2

We extend work by Hansen and Sargent (2001) and Hansen et al. (2006) that described a

decision maker who expresses distrust of a single baseline probability model having a finite

number of parameters by surrounding it with an infinite dimensional family of difficult-to-

learn-about alternative models. The Hansen and Sargent (2001) decision maker represents

these alternative models by multiplying baseline probabilities with likelihood ratios whose

discounted entropies relative to the baseline model are less than a bound that makes alter-

native models stay statistically close to the baseline model. He wants to evaluate outcomes

under these alternative models.3

1Box and Tiao also connects to rho-mixing measures of temporal dependence.
2Tractable ways to specify priors and compute posteriors facilitated a revolution in applied Bayesian

statistics. We require an analogous practical science if the max-min expected utility decision theory ele-
gantly axiomatized by Gilboa and Schmeidler (1989), Maccheroni et al. (2006a,b), and Strzalecki (2011) is
to enlist a community of applied researchers. Viewing a set of models as a decision maker’s way of coping
with approximation issues is a perspective that complements theoretical work about axioms.

3Applications of what Hansen and Sargent (2001) and Maccheroni et al. (2006a,b) call multiplier pref-
erences to macroeconomic policy design and dynamic incentive problems include Karantounias (2013) and
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By building on insights from the the robust control theory contribution of Petersen et al.

(2000), this paper differs from Hansen et al. (2006) by refining how a decision maker forms

a set of models surrounding a baseline model. A new object appears here: a quadratic

function ξ of a Markov state constructed from alternative parametric models that the

decision maker uses to “twist” discrepancy measures to make statistical neighborhoods

include these models. The decision maker wants valuations that are robust to these models

in addition to unspecified models expressed as before by multiplying the baseline model by

likelihood ratios. The quadratic function can be constructed to include alternatives with

either fixed or time-varying parameters, and also alternative statistically similar probability

models inside a convex set Mpξq of martingales that we use to pose a robust decision

problem. We offer a quantitative example that illustrates how the setMpξq more concisely

expresses concerns about particular parametric alternatives than does the special case of

that set, one associated with a particular ξ function, that was in effect used by Hansen

et al. (2006).

We apply our approach to an investor who represents “the market” and whose specifi-

cation uncertainty affects prices of exposures to underlying economic shocks. We describe

how our twisted discrepancy method for constructing the set of probability models Mpξq
affects uncertainty components of these shock exposures. Our continuous-time specification

simplifies asset pricing. A key object is an endogenously determined vector of worst-case

drift distortions to a baseline model.4 The negative of the drift distortion vector equals the

vector of market prices of model uncertainty that compensate investors for facing ambiguity

about probabilities that describe random fluctuations.

A new mechanism amplifies and makes uncertainty prices fluctuate. We introduce no

new risks associated with stochastic volatility.5 Instead, we amplify the prices of exposures

to the “original” shocks. Fluctuations in those prices reflect investors’ struggles to confront

doubts about the baseline model. We study how uncertainty prices vary across investment

horizons.

Our quantitative illustrations feature three model economies characterized by (i) AK

production technologies, (ii) quadratic capital adjustment costs, and (iii) investment re-

Bhandari (2014).
4That object also played a central role in the analysis of Hansen and Sargent (2010).
5By way of contrast, models in which a representative investor’s consumption process has innovations

with stochastic volatility introduce new risk exposures in the form of the shocks to volatilities. Their
presence induces time variation in equilibrium compensations for exposures to shocks that include both
the stochastic volatility shocks as well as the “original” shocks whose volatilities now move.
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turns subject to “long-run risk”. The economies differ either in the number of investment

opportunities or in those investment opportunities’ relative shock exposures. The underly-

ing differences in the three environments affect worst-case models in non trivial ways. In

particular, when a representative investor can choose between two investment opportunities

with asymmetric exposures to “long-run risk”, interactions between the capital distribu-

tion and the persistent growth process can render the latter, which is exogenous under the

baseline model, endogenous under the investor’s worst-case model.

Our quantitative examples illustrate the following three phenomenon induced by the

alternative probability models that we put on a representative investor’s radar together

with her aversion to model uncertainty:

a. An investor particularly fears decisions and acts of nature that put persistence into

her consumption process.

b. When offered opportunities to invest in multiple types of capital that are characterized

by different exposures to random shocks having very persistent effects, an investor

tends to move her portfolio toward capital stocks that are less exposed to those shocks.

c. If she has opportunities to invest in multiple types of capital that are characterized

quantitatively similar exposures to random shocks having very persistent effects but

at the same time also face costs of adjusting their portfolios, an investor diversifies

even more across capital stocks.

Result a shows how concerns about model misspecification manifest themselves in a par-

ticular direction. Results b and c operate in qualitatively similar ways to risk aversion, but

we show that quantitatively model uncertainty matters more.

Section 2 specifies an investor’s baseline probability model and martingale perturbations

to it. Section 3 describes a function ξ that we use to characterize a set of parametric

alternatives to a decision maker’s baseline statistical model. It then describes relative

entropy, a statistical divergence gauge of discrepancies between martingales, and uses it to

define a convex set of probability measures that interest the decision maker. We express

the set of probabilities in terms of a convex set Mpξq of martingales that alter a baseline

model. The martingale representation provides a tractable way for us to formulate a robust

decision problem as a zero-sum two-player game in section 4.

By invoking a Bellman-Isaacs condition, we construct a unique worst-case model that

renders the maxmin decision rule optimal against one of the probability models in the
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convex set. As a consequence, the max-min decision rule is admissible.6 That in turn

allows is to implement a recommendation by Good (1952) to assess the plausibility of a

worst-case model when using a max-min decision theory like that of section 4. Nevertheless,

we acknowledge that we purchase admissibility at a cost because, as discussed in Hansen

and Sargent (2019), there is a tension between dynamic consistency and admissibility. In

this paper, we accept dynamic inconsistency by using a solution of the max-min decision

problem that requires that the minimizing player who choose probabilities commits to

its choice once and for all at time 0. Our formulation can be viewed as a continuous-

time counterpart to the robust control theory formulation of Petersen et al. (2000). In

our dynamic setting, we reassess robustness in subsequent time periods by constructing

robustness bounds and associated sets of probability models for each date and for which

the decision rule remains robust.

As an alternative way to confront the tension between admissibility and dynamic con-

sistency, section 5 studies a way of attaining dynamic consistency by formulating a non-

zero-sum game between a statistician and a decision maker. While we do not feature that

alternative model in the quantitative illustrations provided in this paper, we think it is of

interest in its own right and use it for sake of comparison.

By using estimates from Hansen and Sargent (2018) that extend and alter the empirical

findings of Hansen et al. (2008), section 6 calculates key objects for a quantitative version

of a baseline model together with convex sets of alternative models that concern a robust

investor and a robust planner in three versions of a stochastic growth model. Section 7

constructs a recursive representation of a competitive equilibrium of an economy with a

representative investor. Then it links the worst-case model that emerges from a robust

planning problem to equilibrium compensations that the representative investor earns for

bearing model uncertainty. Our equilibrium features an exponential quadratic stochastic

discount factor whose mathematical form closely resembles one that Ang and Piazzesi

(2003) used in a no-arbitrage statistical model of asset prices and macroeconomic variables.

Section 8 offers concluding remarks. Two technical appendices include formulas that we

use to create our quantitative illustrations .

6That it is admissible means that the robust decision rule cannot be weakly dominated for all probability
models in the set and strictly dominated for some.
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2 Models

This section describes how to form a set of probability models by multiplying a probability

density associated with a baseline model by a set of nonnegative martingales .7 Section

3 uses a family of parametric alternatives to a baseline model to form convex sets of

martingales. Section 4 uses that set to pose a robust decision problem.

We start with a stochastic process X
.
“ tXt : t ě 0u described by a baseline model8

dXt “ pµpXtqdt` σpXtqdWt, (1)

where W is a multivariate Brownian motion.9 Because a decision maker does not fully trust

baseline model (1), he constructs nearby probability models by multiplying probabilities

associated with (1) by likelihood ratios. We represent the likelihood ratio of an alternative

model by a positive martingale MH with respect to the baseline model (1) that satisfies10

dMH
t “MH

t Ht ¨ dWt (2)

or

d logMH
t “ Ht ¨ dWt ´

1

2
|Ht|

2dt, (3)

where H is progressively measurable with respect to the filtration F “ tFt : t ě 0u

associated with the Brownian motion W augmented by information available at date zero.

When Ht satisfies
ż t

0

|Hτ |
2dτ ă 8 (4)

with probability one, the stochastic integral
şt

0
Hτ ¨ dWτ is well defined11 and is a local

martingale.12 Imposing initial condition MH
0 “ 1, we can express a solution of stochastic

7Earlier papers sometimes referred to what we now call the baseline model as the decision maker’s
approximating or benchmark model.

8We let X denote a stochastic process, Xt the process at time t, and x a realized value of the process.
9It is possible to generalize things to allow non Markov stochastic processes that can be constructed as

functions of a Brownian motion information structure. Applications typically use Markov specifications.
10James (1992), Chen and Epstein (2002), and Hansen et al. (2006) used this representation.
11It is a limit (in probability) of the sequence of Ito integrals

şt

0
φnτ dWτ , where tφnuně1 are simple

functions approximating H on r0, ts so that
şt

0
|φnτ ´Hτ |

2dτ Ñ 0 in probability as nÑ8.
12When Ht is such that

şt

0
|Hτ |

2dτ is infinite with positive probability, we adopt the convention that MH
t

is zero when
şt

0
|Hτ |

2dτ is infinite.
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differential equation (2) as the stochastic exponential

MH
t “ exp

ˆ
ż t

0

Hτ ¨ dWτ ´
1

2

ż t

0

|Hτ |
2dτ

˙

. (5)

MH
t is a local martingale, but not necessarily a martingale.13

Definition 2.1. M denotes the set of all local martingales MH constructed via a stochastic

exponential (5) with an H that satisfies (4) and is progressively measurable with respect to

F .

To construct an alternative to the probability measure associated with baseline model

(1), take any bounded Ft-measurable random variable Bt and multiply it by MH
t before

computing a mathematical expectation conditioned on F0. Associated with H are proba-

bilities defined by

EH
rBt|F0s “ E

“

MH
t Bt | F0

‰

for any t ě 0 and any bounded Ft-measurable random variable Bt. Thus, the positive

random variable MH
t acts as a Radon-Nikodym derivative for the conditional expectation

operator EH r ¨ |F0s to be applied to date t random variables. The martingale property of

the processMH ensures that a Law of Iterated Expectations connects a family of conditional

expectations operators.

Under baseline model (1), W is a standard Brownian motion, but under model H, it

has increments

dWt “ Htdt` dW
H
t , (6)

where WH is a standard Brownian motion. Furthermore, under the MH probability mea-

sure,
şt

0
|Hτ |

2dτ is finite with probability one for each t. Equation (3) expresses the evolution

of logMH in terms of increment dW . The evolution of logMH in terms of dWH is:

d logMH
t “ Ht ¨ dW

H
t `

1

2
|Ht|

2dt. (7)

In light of (7), we can write the alternative to model (1) as:

dXt “ rpµpXtq ` σpXtq ¨Hts dt` σpXtqdW
H
t . (8)

13It is inconvenient here to impose either Kazamaki’s or Novikov’s sufficient conditions for the stochastic
exponential to be a martingale. Instead we will verify that minimizers of pertinent problems do indeed
result in martingales.
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3 Sets of models

We use entropy relative to the probability implied by baseline model (1) to delineate a set

of statistically nearby models. From (2) and (3) it follows that MH logMH evolves as an

Ito process with drift

νt
.
“

1

2
MH

t |Ht|
2,

so we can write its conditional mean in terms of a history of local means14

E
“

MH
t logMH

t | F0

‰

“ E

ˆ
ż t

0

ντdτ | F0

˙

“
1

2
E

ˆ
ż t

0

MH
τ |Hτ |

2dτ | F0

˙

. (9)

To obtain a notion of relative entropy of a martingale process MH with respect to baseline

model (1), we divide (9) by t and let t go to infinity, which leads to

∆˚
`

MH
˘ .
“ lim

tÑ8

1

2t
E

ˆ
ż t

0

MH
τ |Hτ |

2dτ | F0

˙

“ lim
δÓ0

δ

2
E

ˆ
ż 8

0

expp´δτqMH
τ |Hτ |

2dτ | F0

˙

. (10)

The second equality expresses relative entropy as an exponentially discounted mean, where

scaling by δ makes the weights integrate to one. This equivalence motivates us to define

discounted relative entropy :

∆
`

MH
| F0

˘ .
“
δ

2
E

ˆ
ż 8

0

expp´δτqMH
τ |Hτ |

2dτ | F0

˙

.

We shall set δ equal to the subjective rate that the decision maker uses to discount expected

utility flows. Discounting makes the discrepancy measure ∆
`

MH | F0

˘

depend on the

information set F0; but its δ Ó 0 limit ∆˚
`

MH
˘

– the entropy concept commonly used in

applied probability theory – is independent of the initial state X0.

14In this paper, we simply impose the first equality. Various sufficient conditions justify this equality.
When choosing probabilities that minimize expected utilities, we will use the representation after the second
equalityin (10) without first imposing that MH is a martingale, but then shall verify that the minimizing
choice is a martingale. Claims 6.1 and 6.2 of Hansen et al. (2006) justify this approach.
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3.1 Twisted relative entropy

For a constant ζ P R`, Hansen and Sargent (2001) used the inequality

∆pMH
| F0q ď ζ (11)

to construct a set of alternative models across which a decision maker seeks robustness. A

vast number of models satisfy constraint (11). In this paper, we describe how the decision

maker can insist that a set include specific worrisome models. To articulate specification

doubts about particular parametric alternatives in this way, we use a continuous time

analogue to a discrete time method of Petersen et al. (2000). We use a non-negative

function of the state variable ξpXq – call it a twisting function – to define twisted relative

entropy :

%
`

MH ; ξ | F0

˘ .
“
δ

2
E

ˆ
ż

expp´δτqMH
τ r|Hτ |

2
´ ξpXτ qs | F0

˙

dτ. (12)

Properties that facilitate our analysis are: (i) % is convex in MH , (ii) % can readily be

computed. As with discounted relative entropy in (11), we bound the discrepancy measure

% to define a convex set of martingale processes:

Mpξq .“
 

MH
PM : %

`

MH ; ξ | F0

˘

ď 0
(

(13)

The special case ξpxq “ 2ζ implies a constraint on martingales MH equivalent with (11),

so Mpξq with a constant twisting function can be viewed as a Hansen-Sargent discounted

relative entropy ball.

From the viewpoint of robust control, a particularly important subset of Mpξq com-

prises those models that satisfy the constraint on the right side of (13) with equality and

thereby trace out an iso-% curve of all local martingales in the setM with twisted relative

entropy value equal to 0. Importantly, state dependence in ξ alters the shape of this curve

and thereby the location of models on the boundary of Mpξq. This happens because a

state-dependent ξ twists the shock process relative to which discounted entropy penalizes

deviations. It thereby affects reallocations of probability distortions across states: when

ξpXtq is high, distorting the mean of the baseline Brownian motion W is less expensive in

terms of % than it is when ξpXtq is low. In contrast, while the constant ζ of Hansen and

Sargent (2001) restricts intertemporal reallocations of instantaneous distortions Ht to Wt,
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it does not affect reallocations of instantaneous distortions across states.

Because it contains the martingale M0 ” 1 associated with the baseline model (1), the

setMpξq is non empty. Furthermore, unlike the set of Hansen and Sargent (2001), so long

as ξ is state-dependent, the twisted set Mpξq is non-degenerate even if its constant term

is zero.

3.2 Focusing uncertainty

A state-dependent twisting function brings an interesting interpretation. Suppose that

the decision maker has a particular parametric alternative in mind – call it a worrisome

model – that she includes in the set because she wants an evaluation under this model. To

highlight the special role of this worrisome alternative, we reserve the notation rS to denote

its martingale process M
rS. When this special worrisome model is Markov, |rSt|

2 can be

written as ξpXtq and its discounted relative entropy is

∆
´

M
rS
| F0

¯

“
δ

2

ż

expp´δτqE
´

M
rS
τ ξpXτ q | F0

¯

dτ.

Consequently, by restricting the decision maker’s set of models with the inequality

δ

2

ż

expp´δτqE
`

MH
τ |Hτ |

2
| F0

˘

dτ ď
δ

2

ż

expp´δτqE
`

MH
τ ξpXτ q | F0

˘

dτ, (14)

we ensure that M
rS is included because H “ rS satisfies with equality the constraint that

appears on the right side of equation (13). Moving the expression on the right side to the

left leads to the inequality constraint of (13). In this way, we can make the setMpξq express

concerns about a particular parametric model M
rS embodied in the twisting function ξ. If

there are multiple models M
rS whose drift distortion satisfy ξpXtq “ |rSt|

2, by using (14) we

include all of these models in the set. Thus, the twisting function provides a tractable way to

supplement the baseline model with other models that are of particular interest to a decision

maker while exploiting the tractability of relative entropy in dynamic settings. By casting

concerns for misspecification in terms of a Lagrange multiplier on the constraint of models

that are under consideration, we are able to formulate dynamic decision problems that have

a convenient recursive structure while expressing concerns about model misspecifications.

See Petersen et al. (2000) for further discussion of this type of formulation.

There are other ways of constructing sets of models for use in dynamic decision problems.
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For instance, Hansen and Sargent (2019) propose a different way of incorporating multiple

models that interest a decision maker, but they also use relative entropy to represent model

misspecification concerns. Furthermore, we note that there are extensive literatures in

operations research, statistics, and control theory that build ambiguity sets of probabilities

by using measures of discrepancy other than relative entropy. Not surprisingly, details of the

set construction matter significantly and have interesting decision theoretic and substantive

implications.15

The following example illustrates that by placing the worrisome alternativeM
rS inMpξq,

we also include all models that are in between M
rS and the baseline (1) as measured by

relative entropy.

Example 3.1. Consider a Markov alternative to baseline model (1) of the form

dXt “ rµpXtqdt` σpXtqdW
rS
t , (15)

where rS “ rηpXq and

rµpxq “ pµpxq ` σpxqrηpxq.

Set 0 ď λ ď 1 and form

ξpxq “ rηpxq ¨ rηpxq

and

µpx, λq “ pµpxq ` λσpxqrηpxq “ p1´ λqpµpxq ` λrµpxq.

Martingales MS with S “ λrηpXq parameterized in this way delineate a family of diffusions

with a common Brownian exposure σpxq and drifts µpx, λq that are convex combinations of

pµ and rµ. All such martingales are included in Mpξq. Allowing λ to be time varying would

extend the parameterized family.

While the set Mpξq contains a myriad of alternative models, the worrisome model is

special in the sense that it specifies a direction of deviations from the baseline model M
about which the decision maker is especially concerned. To emphasize this, in the following

subsection we define a subset ofMpξq that are models that come from the parametric class

of the worrisome model.

15A referee informed us of two recent contributions to the operations research literature, Jiang and Guan
(2018) and Liu et al. (2018). The Jiang and Guan paper in particular studies a static decision problem with
ambiguity over probability measures restrained by an L1 norm over the densities. The authors construct
an outcome that is a weighted average of a conditional value of risk and a maximum potential loss.
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3.2.1 Parameter uncertainty

The twisting function can express misspecification doubts about models with parametric

forms that differ from that of the baseline model. However, in our examples we shall

focus on an important special case that we call “parameter uncertainty” in which both

the baseline model and the worrisome model shaping the twisting function ξ belong to the

same parametric class.

Thus, consider the following example. Let the baseline model have an affine drift

pµpxq “ pα ´ pκx and a constant volatility σpxq “ σ. Consider models with the same

functional form as the baseline model but different pα, κq values. For a given worrisome

model prα, rκq from this class, set

rηpxq “
rα ´ pα

σ
`

pκ´ rκ

σ
x

and form the twisting function ξpxq “ rηpxq2, namely,

ξpxq “ ξ0 ` 2ξ1x` ξ2x
2 9“

ˆ

rα ´ pα

σ

˙2

` 2

ˆ

rα ´ pα

σ

˙ˆ

pκ´ rκ

σ

˙

x`

ˆ

pκ´ rκ

σ

˙2

x2. (16)

By construction, the setMpξq includes the prα, rκq model among many other models whose

% discrepancies from the baseline model are smaller than that of prα, rκq.

Projecting the set Mpξq defined in (13) onto the parametric model class indexed by

pα, κq tells the sense in which the function ξ expresses a decision maker’s concern about

particular parametric alternatives. Figure 1 represents such projections of Mpξq for alter-

native parameterizations of the quadratic ξ function that we construct in equation (16).16

Each shaded region, induced by a different ξ, denotes those elements of the parametric

class that are included in Mpξq. The solid lines are iso-% curves associated with % “ 0.

These regions are convex sets and thus include the λ-weighted drifts described in Example

3.1.

The quadratic twisting function (16) can be decomposed into a constant and a state-

dependent part: ξpXtq “ ξ0 ` rξpXtq. The constant ξ0 affects every alternative model’s %

measure in the same way, which invites us to reinterpret the untwisted relative entropy

ball of Hansen and Sargent (2001) as a set that includes a particular worrisome model that

16We evaluate %
`

MH ; ξ | F0

˘

using X0 “ 0 (the unconditional mean) as the initial state. Under the
indicated parameterization (and assuming reasonable discounting) the quantitative impact of dependence
on X0 is marginal.
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α
Constant tilting function: ξ(x) = ξ0

baseline model

worrisome model (α̃, κ̃) = (-0.02, 0.17)

worrisome model (α̃, κ̃) = (-0.03, 0.17)

0.05 0.10 0.15 0.20 0.25 0.30

κ

Quadratic tilting function: ξ(x) = ξ0 + 2ξ1x+ ξ2x
2

baseline model

worrisome model (α̃, κ̃) = ( 0.00, 0.1)

worrisome model (α̃, κ̃) = (-0.02, 0.1)

Figure 1: Projections of Mpξq onto the parametric class indexed by pα, κq for alternative
ξ functions. The baseline parameters are ppα, pκ, σq “ p0, 0.169, 0.195q. twisted relative
entropy is evaluated using X0 “ 0 as the initial state. For comparison, the dashed contour
on the right replicates the smaller set on the left panel associated with ξ0 “ 0.01.

differs from the baseline only in its intercept term. The left panel of Figure 1 illustrates

this case by displaying the iso-% curves with ξpxq “ ξ0 for two ξ0 values. Inspection of (16)

reveals that by setting ξ0, we include parametric models with specific α values within the

set Mpξq. The blue and red squares depict two such models having the same persistence

parameter κ as the baseline. Although higher ξ0 values tend to enlarge the % “ 0 level sets,

the general shapes of these sets do not change.

The right panel shows how a state-dependent ξ changes this situation. The blue square

represents a worrisome model with a more persistent state than the baseline. The implied

set is twisted toward this persistent model relative to the (smaller) untwisted set in the left

panel (the dashed ellipse). Thus, by setting rκ and constructing the implied Mpξq, we can

endow a decision maker with especial fears of specific amounts of persistence. Similarly,

fear of a combination of high persistence and low mean can be modeled by setting the pair

prα, rκq and constructing ξ by using (16); an example is depicted by the red square on the

right panel.
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3.3 Relative entropy neighborhoods

The twisting function ξ can guarantee that particular worrisome parametric alternatives

are included in the set Mpξq. But Mpξq also contains a vast number of less structured

models that are statistically close to the parametric alternatives represented by the twisting

function. To illustrate this point, we introduce notation that allows us to express a notion

of entropy relative to a model M
pH other than the baseline model (1). We form the log

likelihood ratio process logMH ´ logM
pH and calculate its conditional expectation under

model MH

E
”

MH
t

´

logMH
t ´ logM

pH
t

¯

|F0

ı

“
1

2
E

ˆ
ż t

0

MH
τ |Hτ ´ pHτ |

2dτ |F0

˙

.

A corresponding notion of discounted relative entropy is

p∆
´

MH ,M
pH
|F0

¯

.
“
δ

2
E

ˆ
ż 8

0

expp´δτqMH
τ |Hτ ´ pHτ |

2dτ |F0

˙

.

Evidently, by setting the second argument of p∆ to M
pH ” 1, we obtain ∆

`

MH | F0

˘

.

Consider now a drift distortion process pS that for fixed 0 ă λ ă 1 satisfies the instant-

by-instant constraint

|pSt|
2
ď λ2ξpXtq.

Define

τ
.
“ min

H

δ

2

ż 8

0

expp´δτqE
”

MH
τ ξpXτ q

ˇ

ˇ

ˇ
F0

ı

dτ.

Proposition 3.2. Suppose that τ ą 0 and 0 ă λ ă 1. If

p∆
´

MH ,M
pS
| F0

¯

ď τ p1´ λq2,

then %
`

MH ; ξ | F0

˘

ď 0 and so MH PMpξq.

Proof. See Appendix A.

Proposition 3.2 asserts that restricting a martingale MH to reside in a small enough relative

entropy neighborhood of M
pS guarantees that MH is in Mpξq.
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4 Robust decision problem

This section describes a way to make evaluations and decisions that are robust to worrisome

misspecifications of a baseline model that we describe by a twisting function ξpxq. We cast

the robust decision problem as a two-player zero-sum game between a utility-minimizing

agent who chooses probability models from the setMpξq and a utility-maximizing decision

maker who evaluates plans and possibly chooses actions. Both agents use δ to discount the

future. The minimizing player chooses a worst-case model that teaches a maximizing player

aspects of alternative specifications to which evaluations of decisions are most fragile.

A feature of our formulation is that a key robustness penalty parameter can depend on

the initial Markov state, a tell-tale sign that we are using a timing that assumes permanent

“commitment” to a worst-case model chosen at time 0, a common feature of robust control

models. Our formulation of a robust control problem is an infinite horizon, continuous

time discounted version of one proposed by Petersen et al. (2000). Szőke (2018) utilized

this formulation to estimate the twisting function ξ in a consumption-based asset pricing

model.

4.1 A two-player zero-sum game

We now assume that the baseline model is

dXt “ pµpXt, Dtqdt` σpXt, DtqdWt

where D
.
“ tDt : t ě 0u is a decision maker’s control process that is required to be

progressively measurable with respect to the filtration F . We have modified the notation

in baseline model (1) to allow D to influence the local dynamics of X. We assume an

instantaneous utility process υpX,Dq.

We pose a robust decision problem as a two-player zero-sum differential game with a

single value function. One player chooses decision D to maximize expected discounted

utility flows, while the other player chooses drift distortion H to minimize them. Drift

distortion H must be such that the associated martingale MH satisfies

%pMH ; ξq ď 0. (17)

We solve this zero-sum game by first conditioning on a Lagrange multiplier ` attached to
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constraint (17). We then compute an `˚ that makes (17) satisfied at equality by solving a

maximization problem from Lagrange multiplier theory. This timing protocol imposes com-

mitment to the H model chosen from the set Mpξq, a feature reflected in the dependence

of the multiplier `˚ on the initial Markov state. The value function V for the differential

game satisfies HJB equation

0 “ max
dPD

min
h
´ δV pxq ` υpx, dq `

BV

Bx
pxq ¨ rµ̂px, dq ` σpx, dqhs

`
1

2
trace

„

B2V

BxBx1
pxqσpx, dqσpx, dq1



`
`

2
rh ¨ h´ ξpx, dqs . (18)

We assume a Bellman-Isaacs condition that justifies exchanging the order of maximization

and minimization. The minimizing H˚ takes a form encountered often in robust control

theory, for example Anderson et al. (2003), namely,

H˚
px, `q “ ´

1

`
σpx, dq1

BV

Bx
pxq,

which depends on the Lagrange multiplier ` through the common value function V . Sub-

stituting the minimizing drift distortion into HJB equation (18) gives:

0 “ max
dPD

´ δV pxq ` υpx, dq `
BV

Bx
pxq ¨ µ̂px, dq `

1

2
trace

„

B2V

BxBx1
pxqσpx, dqσpx, dq1



´
`

2
ξpx, dq ´

1

2`
trace

ˆ„

BV

Bx
pxq

1

σpx, dqσpx, dq1
„

BV

Bx
pxq

˙

.

The value function V depends on `. To impose constraint (17), compute

`˚ “ argmax
`

ż

V px, `qdQpxq,

where Q is a measure over initial states that we can allow to assign probability one to a

particular initial state X0 “ x. Alternatively, we can use the implied stationary distribution

for X as Q, in which case Q depends on `. Dependence on the initial state or the measure

Q emerges because we discount future utilities and entropies when constructing a set of

models.
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4.2 Worst-case models

We illustrate how features of the worst-case H˚ hinge on the twisting function ξ by ex-

tending the section 3.2.1 example. As before, suppose that the baseline for the state X is

affine and is hit by a single Brownian shock W

dXt “ ppα ´ pκXtq dt` σdWt. (19)

The decision maker cares about her consumption process C with period utility υpCq “

δ logC. Suppose that she contemplates a particular policy indexed by psαc, sβq that, for a

given X process, implies the following consumption dynamics17

d logCt “
`

sαc ` sβXt

˘

dt.

The agent takes psαc, sβq as given but wants to investigate the policy’s fragility to misspec-

ifications of the state dynamics (19) by computing a worst-case model associated with

consumption policy d “ psαc, sβq. For a fixed policy d, the HJB equation (18) boils down to

a minimization problem over H.

As in section 3.2.1, we use a quadratic ξ to focus the agent’s uncertainty about parame-

ters ppα, pκq. Appealing to formulas from Appendix C, we find that H˚ is affine in X, so the

worst-case model belongs to the parametric family of the baseline indexed by pα, κq. This

allows us to use our projection exercise from section 3.2.1 to produce Figure 2 which is

designed to highlight the effect of ξ on the worst-case model associated with the proposed

policy.

To appreciate our characterization of a worst-case model, recall that the set of alterna-

tive models includes ones with shifts in means of shocks that can occur at any future time.

Included in such specifications are adverse mean shifts that are the same at all future dates.

Such a permanent change in a shock mean can imitate a shift in the constant term α of the

state evolution equation. Similarly, a permanent mean shift in a shock that is linear in the

Markov state can imitate a change in the persistence coefficient κ. While the worst case

probability can look like a change in both coefficients in the absence of state dependence in

ξ, in some of our examples a worst case model imitates a shift in α only. As we will see, by

including a quadratic specification of ξ that is motivated by coefficient uncertainty, changes

17We can view this as a special case of the single capital model in section 6.1, when σk “ 0 and W is
univariate. In that model, by choosing d˚, the decision maker can affect sαc but not sβ.
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in the persistence coefficient κ emerge as part of a worst-case probability specification and

include interesting interactions between α and κ.

0.05 0.10 0.15 0.20 0.25 0.30

κ

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

α

concern about intercept (HS, 2001)

baseline model

worrisome models

boundary (iso-% curve)

iso-value curves

worst-case exp path

0.05 0.10 0.15 0.20 0.25 0.30

κ

concern about persistence

baseline model

worrisome models

boundary (iso-% curve)

iso-value curves

worst-case exp path

Worst-case expansion path as ξ(x) varies

Figure 2: Iso-% and iso-value curves in the parametric class indexed by pα, κq for different
twisting functions. The locus of points of tangency between these curves shows worst-case
models for a sequence of constant ξ (left) and for a sequence of state-dependent ξ (right).
Baseline model parameters are ppα, pκ, σq “ p0, 0.169, 0.195q, the policy is psαc, sβq “ p0.499, 1q.
We evaluate the iso-% and iso-value curves using X0 “ 0 as the initial state. The dash-
dotted line denotes worrisome models as convex combinations of the baseline and prα, rκq “
p´0.01, 0.07q models.

While the iso-% curves circumscribe choices available to the minimizing player within

the parametric class, the thin grey lines capture how the decision maker values these models

when he uses a particular
`

sαc, sβ
˘

policy. These thin lines are iso-value curves representing

those pα, κq pairs to which the decision maker is indifferent at time 0 when she follows

policy
`

sαc, sβ
˘

. Utility increases as we move north. Evidently, the decision maker views

persistence of X asymmetrically: when α ă 0, increasing persistence (lowering κ) decreases

utility, but the opposite is true when α ą 0.

Figure 2 shows forcefully why it matters that a state-dependent twisting function ξ

alters shapes of iso-% curves and thereby positions of models relative to the baseline. The

minimizing agent exhausts his “entropy budget”, so a worst-case model lies on the boundary

of the set: it is determined by points of tangency between iso-value curves and the boundary

of Mpξq. The left panel shows the expansion path with respect to entropy as defined by

Hansen and Sargent (2001) when the decision maker considers unstructured alternatives to

her baseline model. The resulting worst-case models impart negative shifts to the intercept

of X, but leave the persistence parameter κ at its baseline level. On the other hand,
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the right panel shows the expansion path when the decision maker includes particular

worrisome models that focus misspecification doubts on persistence. This makes worst-

case state dynamics exhibit enhanced persistence.

4.3 Recursive representation of preferences

A decision maker ranks alternative consumption plans with a scalar continuation value

stochastic process. Date t continuation values tell a decision maker’s date t ranking. Con-

tinuation value processes have a recursive structure that makes preferences be dynamically

consistent. For Markovian plans, a Hamilton-Jacobi-Bellman (HJB) equation restricts the

evolution of continuation values. In particular, for a plan tCtu, a continuation value process

tVtu
8
t“0 is defined by

Vt “ min
tHτ :tďτă8u

E

ˆ
ż 8

0

expp´δτq

ˆ

MH
t`τ

MH
t

˙„

ψpCt`τ q `

ˆ

θδ

2

˙

“

|Ht`τ |
2
´ ξpXtq

‰



dτ | Ft
˙

(20)

where ψ is an instantaneous utility function. We can use (20) to derive an inequality

that describes a sense in which a minimizing process tHτ : t ď τ ă 8u isolates a statistical

model that is robust. After first deriving and discussing this inequality and the associated

robustness bound, we shall use (20) to present a recursive representation of preferences.

Turning to the derived bound, we proceed by applying an inequality familiar from

optimization problems subject to penalties. Let Ho be the minimizer for problem (20).

The process affiliated with the pair Ho gives a lower bound on discounted expected utility

that can be represented in the following way.

Remark 4.1. If H satisfies:

δ

2
E

ˆ
ż 8

0

expp´δτq

ˆ

MH
t`τ

MH
t

˙

“

|Ht`τ |
2
´ ξpXtq

‰

dτ | Ft
˙

ď
δ

2
E

ˆ
ż 8

0

expp´δτq

ˆ

MHo

t`τ

MHo

t

˙

“

|Ho
t`τ |

2
´ ξpXtq

‰

dτ | Ft
˙

(21)

then

E

ˆ
ż 8

0

expp´δτq

ˆ

MH
t`τ

MH
t

˙

ψpCt`τ qdτ | Ft
˙

ě E

ˆ
ż 8

0

expp´δτq

ˆ

MHo

t`τ

MHo

t

˙

ψpCt`τ qdτ | Ft
˙

. (22)
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for all t ě 0.

Inequality (22) is a direct implication of minimization problem (20). It gives probability

specifications that have date t discounted expected utilities that are at least as large as the

one parameterized by Ho. Thus, inequality (21) defines the models of concern from the

perspective of date t implicit in our date zero commitment formulation. This representation

uses a twisted version of “continuation entropy” to express robustness concerns, namely:

δ

2
E

ˆ
ż 8

0

expp´δτq

ˆ

MHo

t`τ

MHo

t

˙

“

|Ho
t`τ |

2
´ ξpXtq

‰

dτ | Ft
˙

.

But please note that we don’t have to compute continuation entropy in order to construct

the robust decision rules presented in sections 6 and 7.

In the next section, we describe an alternative specification of preferences that attains

dynamic consistency by modifying the dynamic game.

5 Statistician and decision maker

Our formulation of robust decision making is a continuous time extension of a max-min

expected utility decision problem axiomitized by Gilboa and Schmeidler (1989). Epstein

and Schneider (2003) note that such preferences need not be dynamically consistent. Chen

and Epstein (2002) provide continuous-time restrictions that are sufficient for dynamic con-

sistency to prevail. But our max-min utility specification fails to satisfy those restrictions

and are dynamically inconsistent in the sense that they violate the dynamic consistency

axiom of Epstein and Schneider (2003). Epstein and Schneider (2003) suggest a way that

we restore dynamic inconsistency by expanding the set of models that concern the decision

maker. As shown by Hansen and Sargent (2019), however, their suggestion leads to a de-

generate decision theory when used in conjunction with relative entropy neighborhoods of

the type we want to use.

This section suggests a different way to attain dynamic consistency by modifying the

section 4 formulation of the robust decision problem. This alternative formulation achieves

dynamic consistency by having the minimizing player and the maximizing policy maker play

a non-zero-sum game.18 Instead of modeling robust decision making as a simultaneous zero-

sum game with a single value function as we do in the remaining sections of this paper, the

18The non-zero-sum game has some flavor of a dynamic version of an adversarial generative network.
See Goodfellow et al. (2014).
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alternative approach temporarily under discussion in this section separates the decision-

making process into two parts. In a first step, a utility-minimizing player who can be

called a “robust statistician” chooses a model using an intertemporal criterion that does

not discount the maximizing player’s utility process through time. In a second step, the

utility-maximizing player decision maker, who does discount the utility process through

time, chooses actions, taking the statistician’s worst-case model as given.19

The minimizing player’s objective serves two useful purposes. The first is that by

changing the criterion that the minimizing player cares about, we subtly realign payoffs so

that the two players no longer play a zero-sum game. We do this in a way that renders

the minimizing player’s optimal choice time consistent. The second benefit from reordering

payoffs is that it makes the minimizing player’s decision problem align even better with

techniques used in the statistical literature on model discrimination. Thus, that the robust

statistician does not discount future utilities renders the multiplier on the constraint that

restricts his minimizing choice of probabilities independent of the Markov state. That

means that the statistician’s views about what constitute a worst-case model do not change

over time, delivering time consistency in his choices. We proceed to describe details next.

5.1 Two Markov decision problems

A robust statistician takes as given an instantaneous utility function υpX,Dq and minimizes

undiscounted utility over martingales MH that satisfy

lim sup
δÓ0

%
`

MH ; ξ
˘

ď 0. (23)

Replacing (17) with constraint (23) is the key difference from the section 4 formulation. This

change allows us to use a relative entropy concept commonly used in applied probability

theory, the second analytic benefit mentioned in the previous subsection. For our purposes,

it suffices to let the statistician assume that Dt “ dpXtq for a Borel measurable control

law d.20 The resulting minimization problem is a constraint preference counterpart of an

infinite-horizon risk-sensitive control problem posed by Fleming and McEneaney (1995).

The statistician temporarily chooses an r ą 0 and constructs a function Rpxq for the

19This setup is reminiscent of Brunnermeier and Parker’s (2005) formulation in which one agent chooses
beliefs using an undiscounted utility function while the other agent takes those beliefs as fixed when
evaluating alternative plans. Brunnermeier and Parker’s model was not about a decision maker’s concerns
about robustness to misspecification.

20See Hansen and Sargent (2001) for definitions of constraint and multiplier preferences.
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minimizing choice of martingale MH that makes the pair pr, Rq satisfy the HJB equation21

0 “ min
h
´ r ` υrx, dpxqs `

BR

Bx
pxq ¨ ppµrx, dpxqs ` σrx, dpxqshq

`
1

2
trace

ˆ

B2R

BxBx1
pxqσrx, dpxqsσrx, dpxqs1

˙

`
`

2
ph ¨ h´ ξrx, dpxqsq , (24)

where ` is a Lagrange multiplier on constraint (23). Given `, the minimizing h satisfies:

H˚
px, `q “ ´

1

`
σrx, dpxqs1

BR

Bx
pxq. (25)

Substituting H˚ into the HJB equation (24) gives:

r “ υrx, dpxqs `
BR

Bx
pxq ¨ pµrx, dpxqs `

1

2
trace

„

B2R

BxBx1
pxqσrx, dpxqsσrx, dpxqs1



´
1

2`
trace

ˆ„

BR

Bx
pxq

1

σrx, dpxqsσrx, dpxqs1
„

BR

Bx
pxq

˙

´
`

2
ξpx, dpxqq.

Here r depends implicitly on the Lagrange multiplier ` and is a concave function `. We

impose constraint (23) by computing the constant:

`˚ “ argmax
`

rp`q.

That the multiplier `˚ is constant follows from the fact that only the time-averaged asymp-

totic behavior of X and H matters in determining an optimal value r. Influence of the

initial state vanishes in the limit, making the solution be independent of the physical date

chosen for time 0.

The decision maker takes the statistician’s worst-case model H˚ px, `˚q as given and

chooses action d that solves the following discounted HJB equation:

0 “ max
dPD

´ δV pxq ` υpx, dq `
BV

Bx
pxq ¨ rpµpx, dq ` σpx, dqH˚

px, `˚qs

`
1

2
trace

„

B2V

BxBx1
pxqσpx, dqσpx, dq1



.

21Technically, this ergodic control problem requires a slightly different treatment than a problem with
discounting. Finding a solution to the ergodic HJB involves finding a function Rpxq and a constant r,
where r represents the “value function” of the control problem that does not depend on x, while Rpxq is
used to determine the optimal action for a given state x. The function R is defined only up to an additive
constant.
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5.2 A caveat

As mentioned above, the game between the statistician and the decision maker presented in

this section is not a zero-sum game because the two decision have different discount rates.

Their differing discount factors alter the players’ incentives, making them only imperfectly

misaligned in just the right way to render both players’ decisions time consistent.

If we were to specify preferences in this non-zero sum fashion of this section but use a

timing protocol that allows the maximizing decision player to take account of the impact

of its decisions on the statistician, it might lead to a different equilibrium. This is in sharp

contrast with many zero-sum games, like the one in section 4, in which a Bellman-Isaacs

condition allows exchanging the order of extremization.22

While we find the formulation of this section to be substantively interesting, in the

qualitative illustrations to be described in sections 6 and 7, we nevertheless use the original

max-min expected utility formulation of section 4, comforted by our recursive represen-

tation of the implied robustness bounds. In addition, we provide an example in section

6.1 in which moving to the formulation of this section would has very modest quantitative

consequences. One can see this by comparing Table 1 with Table 3 in Appendix B.

6 Capital accumulation with robustness concerns

We illustrate effects of concerns about robustness in three environments using a model of

capital accumulation with adjustment costs proposed by Eberly and Wang (2011). We

modify their model to expose investment returns to long-run risks and make investors

concerned about misspecifications of them. Three distinct example economies environments

feature:

i) a single capital stock

ii) two capital stocks with a common exposure to long-run risk

iii) two capital stocks with only one being exposed to long-run risk

While economy i) has capital accumulation with adjustment costs, by design the implied

consumption evolution conforms to a so called “long-run risk” model. Robustness concerns

22Hansen et al. (2006) describe various sufficient conditions for verifying a Bellman-Isaacs condition. See
Hansen and Sargent (2008, ch. 5) for equivalent outcomes in several zero-sum games distinguished only by
their timing protocols.
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affect uncertainty prices but not consumption dynamics. Equilibrium uncertainty prices

have an affine representation that exhibit endogenous state dependence. We use economies

ii) and iii) to study how robustness concerns alter allocations between two types of capital

as well as risks and their prices. By comparing economies ii) and iii), we study how exposure

to growth rate uncertainty affects allocations and prices. Because they don’t have affine

representations, we approximate equilibrium objects for economies ii) and iii) numerically.

6.1 Single capital stock

Aggregate output is proportional to a single capital stock with a constant productivity

parameter A. A representative household cares about consumption C with instantaneous

utility δ logC. Under the baseline model, investment I affects capital K according to

dKt “

«

It
Kt

´
φ

2

ˆ

It
Kt

˙2

` p.01q
´

pαk ` pβZt

¯

ff

Ktdt` p.01qσkKt ¨ dWt (26)

dZt “ ppαz ´ pκZtq dt` σz ¨ dWt

with adjustment cost parameter φ. With zero investment, the rate of change of capital is

p.01q
´

pαk ` pβZt

¯

, where Z is an exogenously specified continuous-time scalar autoregressive

process that puts long-term risks into returns on capital. Under baseline model (26), the

mean of Z is z “ pαz
pκ

.

The aggregate resource constraint is C ` I “ AK. It is convenient to pose a robust

planner’s problem in terms of an investment-capital ratio Dt
.
“ It

Kt
and logKt that satisfy

d logKt “

„

Dt ´
φ

2
pDtq

2
` p.01q

´

pαk ` pβZt

¯

´
p.01q2|σk|

2

2



dt` p.01qσk ¨ dWt.

Using notation from section 4, we have Xt “ rlogKt, Zts
1 and instantaneous utility function

υpXt, Dtq “ δ log pA´Dtq ` δ logKt.
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6.1.1 Parametric alternatives

A quartet of baseline parameters ppαk, pβ, pαz, pκq appears in (26). A planner is concerned

about alternative models for capital evolution in the following parametric class

d logKt “

„

Dt ´
φ

2
pDtq

2
` p.01q pαk ` βZtq ´

p.01q2|σk|
2

2



dt` p.01qσk ¨ dW
H
t (27)

dZt “ pαz ´ κZtq dt` σz ¨ dW
H
t

where WH denotes a distorted shock process of the form (6). Uncertainty about pαk, βq

describes unknown components in returns to investment while uncertainty about pαz, κq

captures an unknown growth evolution process. We represent a model of the form (27) by

restricting the drift distortion H for W to satisfy

Ht “ ηpXtq
.
“ η0 ` η1Zt (28)

and using (26) and (27) to deduce the following restrictions on η0 and η1 as functions of

pαk, β, αz, κq:

ση0 “

«

αk ´ pαk

αz ´ pαz

ff

, ση1 “

«

β ´ pβ

pκ´ κ

ff

(29)

where

σ
.
“

«

pσkq
1

pσzq
1

ff

.

Pairs pη0, η1q that satisfy restrictions (29) represent models having parametric form (27).

We restrict the set of alternative models by using a quadratic twisting function ξpzq.

Following the method of section 3.2.1 we ensure that the set Mpξq includes a prespecified

quartet prαk, rβ, rαz, rκq by solving an instance of (29) for rη0 and rη1, then setting

ξpxq “ |rη0 ` rη1z|
2 . (30)

For the quantitative examples below, either we twist the pair prαz, rκq and form ξrκs, or we

twist the pair prαz, rβq and form ξrβs.

To set worrisome parameters prαz, rκq or prαz, rβq, we target the entropy of the implied

worst-case model MH˚ relative to the baseline model (26). As discussed in section 3,
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relative entropy ∆˚
`

MH
˘

of martingale process MH equals one half the expectation of

|Ht|
2 under the H induced probability model. As a result, we can parameterize relative

entropy of the worst-case model using the scalar q:

∆˚
´

MH˚
¯

“
q2

2

One can think of q as a measure of the magnitude of a probability distortion. We calibrate

worrisome models to induce specific q values.

To see how state-dependence of a quadratic twisting function influences this calibration,

consider again the decomposition ξpZtq “ ξ0 ` rξpZtq and suppose that constraint (17) is

satisfied with equality to arrive at

q2

2
“ ∆˚

´

MH˚
¯

“
ξ0
2
` lim

δÓ0

δ

2

ż

expp´δτqE
´

MH˚

τ
rξpZτ q | F0

¯

dτ
.
“ ξ0 ` Ωpξq. (31)

The last equality defines Ωpξq as the part of relative entropy that arises from state-

dependence in ξ. Indeed, when (30) holds, worrisome parameters rκ and rβ influence the

implied worst-case model only through Ωpξq. For this reason, when we contrast the effects

of ξrκs and ξrβs on the worst-case model in section 6.1.4, we will fix q and ξ0 to make sure

that the contributions from state-dependence are the same, i.e., Ω
`

ξrκs
˘

“ Ω
`

ξrβs
˘

.

6.1.2 Planner’s problem

To capture a desire for robustness to parametric misspecifications represented by the

class (27), we suppose that the twisting function has the form (30) and seek a function

V pz, k; `q “ log k ` νpz; `q that satisfies the robust planner’s HJB equation

0 “max
d

min
h

´δνpz; `q ` δ logpA´ dq `
„

d´
φ

2
d2 ` p.01q

ˆ

pαk ` pβz ´
p.01q|σ2

k|

2

˙

`
Bνpz; `q

Bz
ppαz ´ pκzq `

1

2

B2νpz; `q

Bz2
|σz|

2

` p.01q rσk ¨ hs `
Bνpz; `q

Bz
rσz ¨ hs `

`

2

“

|h|2 ´ ξpzq
‰

. (32)
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The last line of (32) depicts how concerns about robustness enter the HJB equation via h.

The minimizing choice of h depends on the state z through the marginal value function:

H˚
pz; `q

.
“

«

h˚k
h˚z

ff

“ ´
1

`

„

p.01qσk `
Bνpz; `q

Bz
σz



. (33)

The maximizing choice of d solves:

1´ φd˚ “
δ

A´ d˚ (34)

where d˚ denotes the chosen investment-capital ratio. Notice that d˚ is constant and does

not depend on the underlying state variables, so the optimal consumption-capital ratio

c˚ “ A´ d˚ is also constant. Because neither c˚ nor d˚ is affected by robustness concerns,

under the baseline model capital and consumption dynamics are not altered by robustness

concerns. We write the implied dynamics for the logarithm of consumption as:

d logCt “ p.01q
´

pαc ` pβZt

¯

dt` p.01qσc ¨ dWt (35)

where

pαc “ 100

ˆ

d˚ ´
φ

2
pd˚q2

˙

` pαk ´
p.01q|σk|

2

2
and σc “ σk. (36)

As asserted, these are independent of any robustness parameters that affect h˚. In contrast

to quantity dynamics, shadow prices for exposure to uncertainty are modified by robustness

concerns as intermediated through the minimizing choice of h˚. This illustrates again

a finding of Hansen et al. (1999) and an approximation to it by Tallarini (2000) that

robustness concerns affect prices but not quantities in models with a single capital stock.

In Appendix C.1, we show that the value function νpz; `q is quadratic in z. As a

consequence, h˚ is affine in z. The multiplier `˚ is then determined by solving

`˚pz0q “ arg max
`ą0

νpz0; `q

where z0 is an initial value of Z. We can find the worst-case model by substituting `˚pz0q

in equation (33).
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6.1.3 Baseline model

The basis of our quantitative analysis is an empirical model of aggregate consumption dy-

namics. We follow Hansen et al. (2008) by fitting a trivariate VAR for macroeconomic

time series that contain information about long-term consumption growth, namely, log

consumption growth, the difference between logs of business income and consumption, and

the difference between logs of personal dividend income and consumption.23 We restrict

all three time series to have a common martingale component by imposing a known coin-

tegration relation among them.

We convert the discrete time VAR estimates to baseline parameters ppαk, pβ, pαz, pκq and

pσc, σzq by setting pαz “ 0 and pβ “ 1 and matching the dynamics of the VAR implied long-

term consumption growth forecast with those of Z.24 As a result, we obtain the following

parameters for the baseline model of consumption (35):

pαc “ .484 pβ “ 1

pαz “ 0 pκ “ .014

σ “

«

pσcq
1

pσzq
1

ff

“

«

.477 0

.011 .025

ff

. (37)

We set the household’s subjective discount rate equal to δ “ .002.

So long as condition (36) is satisfied, the particular values of the technology parameters

pφ,A, pαkq are inconsequential in the single-capital case, but they will be important in

section 6.2 when we study economies with two capital stocks. We now use the single

capital stock economy to illustrate the impact of parameter choice on the steady state

consumption/capital ratio, the investment/capital ratio and the implied rate of return. To

be clear, we are not formally calibrating coefficients to match these steady states, be we are

choosing them in part to illustrate the consequences of uncertainty. Formal calibration is

23The time series are quarterly data from 1948 Q1 to 2018 Q2. Our consumption measure is per capita
consumption of non-durables and services from NIPA Table 1.1.5. Business income is measured as propri-
etor’s income plus corporate profits per capita and the series are from NIPA Table 1.12. Personal dividend
income is from NIPA Table 2.1. By including proprietors’ income in addition to corporate profits, we use a
broader measure of business income than Hansen et al. (2008), who used only corporate profits. Moreover,
Hansen et al. (2008) did not include personal dividends in their VAR analysis.

24In more detail, we choose pαc and p1´pκq to match the VAR implied unconditional mean of consumption
growth and autoregressive coefficient of expected long-term consumption growth, respectively. In addition,
we set pσc, σzq such that p1, pκ´1qσσ1p1, pκ´1q1 is equal to the VAR implied covariance matrix of the one-
step-ahead forecast error for consumption growth and expected long-term consumption growth. We achieve
identification by imposing a lower triangular structure with positive diagonal elements on σ.
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hard to defend because of the stylized nature of the economic model.25 We set the capital

productivity parameter A “ .05. For the adjustment cost parameter, φ, we use an annual

value of 7, By converting the annual quadratic cost parameter to quarterly units, we obtain

φ “ 28.26 We then use (36) to compute pαk so that αc “ .484 is satisfied. As a result, we

obtain the following values

A “ .05 φ “ 28 pαk “ ´1.279 (38)

The implied steady states are:

c˚ “ .0182 d˚ “ .0318 rate of return (quarterly) “ .006

6.1.4 Quantitative results

Table 1 reports worst-case models for three specifications of the quadratic twisting function

formed according to (30). As discussed in section 6.1.1, we choose the underlying worrisome

models to attain specific levels of relative entropy of the implied worst-case martingaleMH˚ ,

in particular, for q “ .1, .2. The top panel shows the case of a constant twisting function,

which has the property that the worrisome model changes the value of rαz relative to αz

only. This example implements the untwisted set used by Hansen and Sargent (2001).

The middle panel shows the case of ξrκs, the twisting function that arises from altering

the value of rκ thereby expressing fears of specific degrees of persistence. We report results

for two rκ values and choose rαz ď pαz so that the implied worst-case models achieve the

prespecified q targets. The effect of concerns about exposure of consumption growth to the

long-run risk state, i.e., the case with rβ ‰ pβ, is displayed in the bottom panel of Table 1. We

make the twisting functions, ξrκs and ξrβs, comparable by guaranteeing that the fraction of

q that comes from the state-dependent twisting, Ωpξq, is the same. This involves using the

same rαz as for ξrκs and choosing rβ so that a prespecified q value is achieved. Accordingly,

one can compare the middle and bottom panels line by line.

In all cases, worst-case models reduce αc and impart a negative mean αz
κ

to the long-

run risk process that describes persistence in consumption growth. Worst-case models

25For instance, capital should presumably be broadly conceived to include human capital. Moreover, we
are abstracting from the durable goods component to consumption. Presumably steady state return might
be better aligned with a riskless return and not the return to “risky capital” as is typically done in the real
business cycle literature.

26The empirical evidence for this parameter is notoriously weak. For instance, Cooper and Haltiwanger
(2006) note a range 3–20 range from empirical evidence.
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q rαz rκ rβ αc β αz κ ∆c̄ mz sz

Baseline

0.000 0.000 0.014 1.000 0.484 1.000 0.000 0.014 0.000 0.000 0.163

Constant ξ

0.100 -0.002 0.014 1.000 0.455 1.000 -0.003 0.014 -0.219 -0.190 0.163
0.200 -0.005 0.014 1.000 0.427 1.000 -0.005 0.014 -0.437 -0.380 0.163

State-dependent ξrκs

0.100 -0.002 0.010 1.000 0.459 1.005 -0.003 0.013 -0.218 -0.192 0.167
0.200 -0.004 0.010 1.000 0.434 1.005 -0.005 0.013 -0.437 -0.385 0.167

0.100 -0.000 0.005 1.000 0.466 1.026 -0.002 0.010 -0.211 -0.187 0.190
0.200 -0.002 0.005 1.000 0.448 1.026 -0.004 0.010 -0.431 -0.386 0.190

State-dependent ξrβs

0.100 -0.002 0.014 1.156 0.463 1.025 -0.002 0.010 -0.212 -0.186 0.190
0.200 -0.004 0.014 1.196 0.453 1.045 -0.003 0.008 -0.421 -0.374 0.221

0.100 -0.000 0.014 1.172 0.467 1.032 -0.002 0.009 -0.206 -0.183 0.199
0.200 -0.002 0.014 1.215 0.464 1.059 -0.002 0.006 -0.399 -0.358 0.257

Table 1: Worst-case parameter values when ξ is defined by (30). We evaluate `˚pz0q using z̄

as the initial state for the calculations. ∆c̄
.
“
`

αc `
βαz
κ

˘

´

´

pαc `
pβpαz
κ̂

¯

denotes the change

in the long run consumption growth expectation. Note that
´

pαc `
pβpαz
κ̂

¯

“ .484. mz and sz

denote the unconditional mean and standard deviation of Z under the worst-case model.

implied by the state-dependent twisting functions also feature increased persistence of Z

and enhanced exposure β of consumption growth to Z. In both cases, although the mini-

mizing agent could choose to increase persistence and exposure further, he instead chooses

to allocate some of his entropy budget to append adverse constant shifts to the Brown-

ian increments. This trade-off differs across the two state-dependent twisting functions.

Evidently, worst-case models implied by ξrβs tend to distort pβ, κq more and pαc, αzq less

relative to those implied by ξrκs. The difference originates in the shapes of ξrκs and ξrβs.

Figure 3 displays instances of two twisting functions that correspond to given q and

ξ0 levels. As we saw in section 3.1, the relative values that ξ assigns to the different

z’s indicate the extent to which the minimizing agent is constrained, thereby shaping the

worst-case model. More specifically, in order to reach a given level of Ωpξq ą 0, defined

as the unconditional mean of ξpzq ´ ξ0 under model MH˚ , the minimizing agent avoids

regions with ξpzq ă ξ0 and focuses instead on z-values with ξpzq ą ξ0. Given that, ξrκs

clearly discourages positive values of z and achieves Ω
`

ξrκs
˘

by distorting the mean of Z.
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Figure 3: Twisting functions ξrκs and ξrβs associated with worrisome prαz, rκq “ p´.002, .005q

and prαz, rβq “ p´.002, 1.215q, respectively. Dashed horizontal line shows the state-
independent part of the twisting function, while the dotted horizontal line denotes relative
entropy of the induce worst-case models with q “ .2.

On the other hand, by encouraging z values with large absolute values, ξrβs implies an H˚

that distorts the variance of Z relatively more. These forces produce the last two columns

of Table 1.

The adverse worst-case shifts have long-lasting effects on the growth rate of consump-

tion. These effects are reflected in the quantity ∆c̄ that represents the difference between

the unconditional consumption growth means in the worst-case and baseline models. ∆c̄

traces out long-term consequences of an adverse shift in the drift vector of the Brownian

motion at a given date. Because an adverse shift could occur at any moment, the implied

worst-case parameters reflect what would happen if an adverse drift shift occurred at every

future moment.

The middle panel of Table 1 also shows that for any fixed rκ, expanding the set of models

by altering the worrisome rαz leaves the worst-case persistence parameter κ and exposure

parameter β intact, inducing extra distortions only in the intercept terms αc and αz. This

is the same effect that we can see in the top panel showing the case without twisting.

In Table 2 we compare relative entropy to Chernoff entropy and the implied half lives.

We use half-lives defined by HL
.
“

log 2
c

, where c is Chernoff entropy of the worst-case

model. Chernoff entropy is a sharp upper bound on the asymptotic decay rate in type
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rκ rβ rαz q ∆˚ c HL

0.014 1.000 -0.002 0.100 0.005 0.001 555
0.014 1.000 -0.005 0.200 0.020 0.005 139

0.010 1.000 -0.002 0.100 0.005 0.001 581
0.010 1.000 -0.004 0.200 0.020 0.005 145

0.005 1.000 -0.000 0.100 0.005 0.001 758
0.005 1.000 -0.002 0.200 0.020 0.004 191

Table 2: Entropies of worst-case models relative to the baseline model. The column ∆˚ is
relative entropy between the baseline and the worst-case model. The column “HL” is the
half-life computed from Chernoff entropy c between the baseline and the worst-case model.

I and type II error probabilities. We use it to indicate statistical distance between the

baseline and the worst-case models, with low values of c (high values of HL) indicating

that the two models are hard to distinguish.27

6.2 Two capital stocks

We now extend investment opportunities by adding a second productive capital that can

be used to produce the common consumption good with constant productivity. Under the

baseline model, investment Ip1q and Ip2q affect two capital stocks Kp1q and Kp2q according

to

dK
p1q
t “ K

p1q
t

»

–

¨

˝

I
p1q
t

K
p1q
t

´
φ1

2

˜

I
p1q
t

K
p1q
t

¸2

` p.01q
´

pα1 `
pβ1Zt

¯

˛

‚dt` p.01qσ1 ¨ dWt

fi

fl

dK
p2q
t “ K

p2q
t

»

–

¨

˝

I
p2q
t

K
p2q
t

´
φ2

2

˜

I
p2q
t

K
p2q
t

¸2

` p.01q
´

pα2 `
pβ2Zt

¯

˛

‚dt` p.01qσ2 ¨ dWt

fi

fl

dZt “ ppαz ´ pκZtq dt` σz ¨ dWt

subject to the aggregate resource constraint

Ct ` I
p1q
t ` I

p2q
t “ A1K

p1q
t `A2K

p2q
t .

27See Hansen and Sargent (2018) more details about the computation and the interpretation of Chernoff
entropy.
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The two sectors are identical in their technology parameters pA1, φ1, pα1q “ pA2, φ2, pα2q and

exposures to the Brownian shocks, σ1 “ σ2, but can differ in exposures to long-run risk, so

that pβ1 ‰ pβ2. To study how multiple capital stocks and heterogeneity in their exposures

to long-run risk affect decision rules and the worst-case model, we consider two cases:

ex post heterogeneity: two capital stocks possess identical evolution equations but are

exposed to idiosyncratic shocks that give rise to a non degenerate distribution of

capital ex post. This case features a trade-off between diversification and adjustment

costs similar to studied by Eberly and Wang (2011). We study how concerns about

model misspecification affect this trade-off.

ex ante heterogeneity: two capital stocks differ in their evolution equations, the first

capital stock is immune to long-run risk becaase pβ1 “ 0, while the second capital

stock is exposed to it because pβ2 ą 0.

Like the case with a single capital stock, it is convenient to use the investment ratios

D
p1q
t

.
“

I
p1q
t

K
p1q
t

and D
p2q
t

.
“

I
p2q
t

K
p2q
t

as controls, and the logarithm of aggregate capital, logKt
.
“

log
`

Kp1q `Kp2q
˘

, and the long-run risk component, Z, as state variables. However, with

costly reallocation between the two capital stocks, the distribution of capital becomes an

additional endogenous state variable that we express with the ratio28

Rt
.
“

K
p2q
t

K
p1q
t `K

p2q
t

“
K
p2q
t

Kt

P r0, 1s.

Adjustment costs prevent the household from setting Rt ideally at every instant; instead

the household influences its motion at each instant by setting the investment ratios D
p1q
t

and D
p2q
t .

The state vector is then Xt
.
“ rlogKt, Rt, Zts

1. Importantly, the first two of these

variables are heteroskedastic with volatilities being29

σKpXtq “ p.01q pσ1p1´Rtq ` σ2Rtq and σRpXtq “ Rtp1´Rtqp.01q pσ2 ´ σ1q . (39)

In Appendix C, we show that the value function of the robust planner is additively separable

28Because we solve the problem numerically on a grid, we use a numerically more stable choice for the

endogenous state, namely, Lt
.
“ logK

p2q
t ´ logK

p1q
t . One can get Rt from Lt using the one-to-one mapping

Rt “ exppLtq{p1 ` exppLtqq. Using a logarithmic transform allows us to place relatively more grid points
near the boundaries of R.

29For explicit formulas of the drift and volatility terms of the state vector X, see Appendix C.
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in logK, making the optimal investment ratios d˚1 and d˚2 become functions of pR,Zq only.

Implied equilibrium consumption is

logCt “ logKt ` log
´

rA1 ´ d
˚
1pRt, Ztqsp1´Rtq ` rA2 ´ d

˚
2pRt, ZtqsRt

¯

. (40)

The worst-case model ceases to share the parametric form of the baseline model, but the

distortion h˚ remains Markov and depends only on the contemporaneous capital distribu-

tion, Rt, and the long-run risk state Zt.

To induce independent variation in the two capital return processes, we presume that

there are three underlying Brownian motions with volatility vectors

σ1 “ s

»

—

–

.477

0

0

fi

ffi

fl

, σ2 “ s

»

—

–

0

.477

0

fi

ffi

fl

, σz “

»

—

–

.011
?
.5

.011
?
.5

.025

fi

ffi

fl

,

where s is a scaling parameter that we introduce to control effects of diversification on

aggregate consumption volatility. Multiplying the first two entries of σz by
?
.5 ensures

that, despite having an extra shock, the local volatility of the long-run risk state, |σz|, is

unchanged relative to the single capital economy.

To ensure comparability across different settings, in each case we recalibrate the depre-

ciation rate pα1 “ pα2 and exposure scale parameters s so that the following are true:

1. The unconditional expectation of the drift and volatility terms of equilibrium con-

sumption growth, evaluated under the stationary distribution of the baseline model

with robust controls d˚1 and d˚2 , are equal to pαc and |σc| from (37), respectively.

2. Relative entropies between baseline and worst-case models are kept constant across

the different settings.

Regarding the last point, the baseline parameters ppαz, pκq are always set to the values

in (37). We will use different types of worrisome models calibrated to induce worst-case

models with a specific level of relative entropy. In this section, we use one that differs only

in the intercept term rαz, that is, we keep rκ “ pκ, rβ1 “ pβ1, and rβ2 “ pβ2, and choose rαz to

get q “ .2. In section 7 we will use worrisome models that imply state-dependent twisting

functions and calibrate them to set q “ .2.

Directing the decision maker’s concerns toward particular parametric misspecification

has relatively small effects on quantities, but has substantial effects on prices. Studying the
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two cases demonstrates that the forces in this section are also present in the robust control

model of Hansen and Sargent (2001). In section 7, we turn to pricing and investigate effects

of a state-dependent ξ.

6.2.1 Symmetric returns to two capital shocks

Consider the case with ex post heterogeneity only, that is, set pβ1 “ pβ2 “ .5 and pA1, φ1, pα1q “

pA2, φ2, pα2q “ pA, φ, pαkq using values from section 6.1.3. Because diversification can reduce

aggregate consumption volatility, we increase the exposures σ1 “ σ2 relative to the single-

capital economy by setting s “ 1.32, so that average volatility of equilibrium consumption

growth equal that estimated from U.S. data.
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Figure 4: Features of robust controls and the worst-case model with ex post heterogeneity.
Left panel: Optimal investment ratio as a function of the allocation of capital. Right
panel: stationary distributions (marginals and 90% “confidence sets”) for the states pR,Zq
under three scenarios: Solid: with non-robust controls using the baseline state evolution,
Dashed: with robust controls using the baseline state evolution, Dotted: with robust
controls using the worst-case state evolution. Green dash-dotted line denotes the worst-
case mean of Z in the single capital economy. Thin dashed lines show median values of the
states under the baseline model with robust controls.

Figure 4 summarizes properties of the optimal controls and worst-case model with

and without robustness concerns. With ex ante identical capital stocks, the risk-averse
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household seeks a balanced capital distribution with desired level R˚ “ .5 in order to

minimize the volatility of aggregate consumption. However, an exactly balanced capital

distribution is accompanied by the highest volatility of R, so maintaining this state is costly

due to the adjustment costs. Thus, this setting presents a tension between diversification

and adjustment costs. The black color in Figure 4 shows the case without robustness, i.e.,

the investor with expected logarithmic utility analyzed by Eberly and Wang (2011). As

the share of the first capital stock becomes low as R becomes high, there is a mild increase

in the corresponding investment ratio. Due to symmetry, the analogous effect prevails for

the second capital stock, leading to a slight mean reversion in the dynamics of R.

The red color represents the case with robustness. Evidently, a preference for robustness

makes the agent’s diversification concern become stronger. The robust investment ratio re-

acts more aggressively to deviations from a balanced capital distribution, so mean reversion

of R under the baseline model becomes stronger than without robustness concerns. Because

it fears negative mean shifts in the Brownian shocks to Z that reduce perceived expected

returns, the household is willing to pay more adjustment costs. With symmetric exposures,
pβ1 “ pβ2, long run risk is not diversifiable, so the lower expected returns push the household

toward a more diversified portfolio with relatively low variance.

Long run effects of these forces are present on the right panel of Figure 4 depicting the

joint and marginal stationary distributions of the states pR,Zq. The difference between

the black and red distributions illustrates the shrinking effect of robustness concerns on

the distribution of capital. The blue color represents the worst-case probability model that

supports these “precautious” decisions in an ex post Bayesian sense. As mentioned before,

the crucial feature of this worst-case model is that it imparts a negative unconditional mean

to the long-run risk process.30

To study the speed of convergence of the capital distribution, Figure 5 plots the “gen-

eralized” impulse response functions (IRFs) proposed by Gallant et al. (1993) and Koop

et al. (1996). The impulse response of R for the linear combination of shocks chosen by

the vector w is defined as

ΦRpt, x,wq
.
“ E rRt | dW0 “ w, X0 “ xs ´ E rRt | dW0 “ 0, X0 “ xs .

30The stationary variance of R under the worst-case model appears to be smaller than it is under the
baseline dynamics, suggesting a slight R-dependence in distortions to the two idiosyncratic shocks that
emerges because volatility of logKt (hence logCt) is a function of R (see the expressions in (39)). Due to
symmetry, however, these distortions do not affect the stationary mean of the ratio R.
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Figure 5: Impulse response functions of R to the second idiosyncratic shock with symmetric
(left) and asymmetric returns (right). The size of the shock is w “ r0, 1, 0s1. The initial R0

is set at the median of the stationary distributions of R under the baseline model. In all
cases, Z0 “ sz. For explanation of the different colors see the caption of Figure 4

Because our model is nonlinear, the generalized impulse responses depend on the initial

state x and shock vector w. We focus on effects of a positive one standard deviation shock to

the second capital stock31 and evaluate ΦR at the median of the stationary distribution of R.

As illustrated by the left panel of Figure 5, idiosyncratic capital shocks have small but very

persistent effects on the capital distribution. Since the robust investment rates are more

sensitive to R than those without robustness (see left panel of Figure 4), the persistence

of R is slightly reduced when the household is concerned about model misspecification.

The dependence of ΦR on the initial capital distribution is very small.32 This follows from

the fact that with homogeneous exposure to long run risk, the dynamics of R and Z are

independent of each other. Among other things, this implies that (1) shock to the long run

risk state does not affect ΦR, and (2) the IRFs on the left panel of Figure 5 do not depend

on Z0.

6.2.2 Asymmetric returns to two capital stocks

We now turn to ex ante heterogeneity by studying an economy in which the two capital

stocks are exposed to long run uncertainty asymmetrically. In particular, we set pβ1 “ 0

and pβ2 “ .5 and choose s “ 1.14 so that unconditional means of the drift and volatility

terms of equilibrium consumption growth are equal to those estimated from U.S. data.

31Changing the magnitude (or sign) of the shock does not affect the qualitative properties of our results.
32Setting R0 equal to the .1 and .9 deciles of the stationary distribution of R leads to impulse response

functions that are indistinguishable from those depicted by the lines in Figure 5.
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Studying the drift of R sheds light on how heterogeneous exposure to Z changes out-

comes relative to section 6.2.1:

µRpXtq “

„ˆ

d˚2 ´
φ2pd

˚
2q

2

2
` .01pα2

˙

´

ˆ

d˚1 ´
φ1pd

˚
1q

2

2
` .01pα1

˙

` .01
´

pβ2 ´ pβ1

¯

Zt`

p.01q2
`

|σ1|
2
p1´Rtq ´ |σ2|

2Rt ` pσ1 ¨ σ2qp2Rt ´ 1q
˘‰

Rtp1´Rtq.

In the special case pβ1 “ pβ2, the baseline evolution of R is independent of Z and, as we

saw before, the desired capital share is R˚ “ .5 irrespective of Z. With heterogeneous

exposure, this is no longer true: movements in the long-run risk state induce fluctuations

in the relative attractiveness of the two assets thereby rendering the desired capital share R˚

dependent on Z. Effectively, Z becomes an exogenous aggregate shock with the property

that negative values (“recession”) push the household towards the less exposed first capital,

while positive values (“boom”) shift the desired portfolio towards the more shock-exposed

second capital. Since Z is persistent, the household wants to reallocate capital in order

to get closer to the Z-dependent desired capital share. Figure 6 shows that this force

increases the unconditional variation of R even without robustness. Nevertheless, because

the baseline distribution of Z is symmetric around z̄ “ 0, the unconditional mean of R is

still close to .5.

In contrast, because the worrisome model assigns a negative unconditional mean to Z,

from the worst-case point of view the less exposed first capital stock appears relatively

more attractive on average. Indeed, as can be seen in Figure 6, the robust investment rates

induce a stationary capital distribution with mean « .1. Moreover, just as in section 6.2.1,

concerns about misspecifications increase the household’s desire to stabilize fluctuations of

R around the optimal capital share. This induces strong positive correlation between R and

Z that also shapes the IRFs in the right panel of Figure 5. With heterogeneous exposures to

Z, the idiosyncratic capital shock has an amplification effect on R relative to the response

occurring with symmetric returns. Amplification occurs because the idiosyncratic shock

hits Z as well so that and the induced positive response temporarily increases the second

capital stock’s expected excess return; this leads to hump-shaped impulse responses of R.

The worst-case model makes the drift of R become Z dependent. In addition, under the

household’s ex post Bayesian belief, the long-run risk state is no longer exogenous. Instead,

as depicted by the left panel of Figure 7, the robust household expects larger falls in Z

when holdings more of the Z-exposed asset. The right panel of Figure 7 (accompanied

with the right panel of Figure 5) illustrates how such beliefs affect the perceived impulse
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Figure 6: Features of robust controls and the worst-case model with ex ante heterogeneity.
For explanation of the different panels and colors see the caption of Figure 4. Shaded areas
on the left panel show inter-decile ranges for the stationary distributions of Z under the
baseline model with the thin dash-dotted line denoting the .9 decile.

response of the long-run risk state to an idiosyncratic capital shock: (1) for short horizons,

the positive response appears less persistent than it is under the baseline model; and (2)

for longer horizons, the effect becomes negative temporarily.

7 Prices of model uncertainty

In this section, we study asset pricing implications of the two state-dependent twisting

functions, ξrκs and ξrβs, in the environments of section 6. In the single-capital economy, we

saw that the two twisting functions induce noticeably different worst-case models: while ξrκs

tends to impart adverse shifts in the mean of Z, ξrβs focuses relatively more attention on an

increased variance of Z. The pricing implications of these worst-case models are substantial

in an economy with two capital stocks, where we observed an intricate relationship between

the long-run risk state Z and capital distribution R.

First, we consider pricing in the single-capital economy and show that in this special

case the representative investor’s stochastic discount factor takes a tractable affine form.
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Figure 7: Drift of the long-run risk state (left) and IRFs of Z to the second idiosyncratic
shock (right). Left: Shaded areas show inter-decile ranges for the stationary distribution of
Z under the baseline model with the thin dash-dotted lines denoting the .9 deciles. Vertical
dashed line shows the median value of R. Right: The size of the shock is w “ r0, 1, 0s1.
Initial states pR0, Z0q are the median values of the stationary distribution under the baseline
model with robust controls.

Then we turn to economies with two capital stocks and study how alternative assumptions

about the exposure of consumption to long-run risk affect prices of model uncertainty.

7.1 An affine stochastic discount factor

Consider first the economy with a single capital stock. We construct market prices of

risk and uncertainty from shadow prices for the planning problem from section 6.1.2. By

evaluating the household’s marginal rate of substitution at the proposed equilibrium con-

sumption process, we deduce a stochastic discount factor process Λ that obeys

dΛt “ ´p.01q

„

100δ ` pαc ` pβZt ` σ
1
cH

˚
t ´

p.01q|σc|
2

2



looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

risk free rate

dt´

»

—

—

—

–

p.01qσc
loomoon

risk price

` ´H˚
t

loomoon

uncertainty
price

fi

ffi

ffi

ffi

fl

1

dWt.

(41)

The log stochastic discount factor has a linear-quadratic local mean and local variance.

The instantaneous interest rate is affine in the state variable as are uncertainty prices.

Functional forms of this type have been used extensively in empirical asset pricing appli-

cations. A prominent example is Ang and Piazzesi (2003) who estimated a term structure

model with an exponential quadratic stochastic discount factor process driven by macroe-
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conomic state variables. More recently, Piazzesi et al. (2015) assumed an affine form for the

likelihood ratio between a well-fitting statistical model of zero-coupon interest rates and

a potentially different model assumed to be used by financial experts’ to make forecasts

about those interest rates. Using survey data on expert’s forecasts, they found large and

systematic differences between the two models.

Szőke (2018) used our Section 4 formulation to broaden findings of Piazzesi et al.

(2015). He posited a representative investor with a log-linear baseline model for con-

sumption growth and inflation and a set Mpξq induced by a quadratic twisting function.

Exploiting the tractable stochastic discount factor (41), he estimated the parameters of ξ

with maximum likelihood using data on zero-coupon yields and macro aggregates. Then,

appealing to the ex post Bayesian interpretation of the worst-case model, he compared

interest rate forecasts under the estimated worst-case model with survey data on experts’

forecasts. He found evidence that the discrepancy found by Piazzesi et al. (2015) can

partly be attributed to pessimistic adjustments consistent with the tight cross-equation

restrictions implied by our refinement of robust control theory.

Minus the local exposures to the Brownian shocks are usually interpreted as local “risk

prices”, but we reinterpret them as follows. We think of p.01qσc as risk prices induced by

the curvature of log utility and ´H˚
t as “uncertainty prices” induced by a representative

investor’s doubts about different aspects of the baseline model. For the single-capital

economy, the uncertainty price takes the form

Ut
.
“ ´H˚

t “ ´η
˚
0 ´ η

˚
1Zt. (42)

In the constant ξ case, η˚1 “ 0, hence Ut is constant; but when ξ is state dependent, η˚1 differs

from zero, so the uncertainty prices are time varying and depend linearly on the growth

state Zt. When U depends positively on Z, uncertainty prices are higher in bad than in

good times. It is noteworthy that countercyclical uncertainty prices emerge endogenously

from a baseline model that excludes stochastic volatility in the underlying consumption

risk as an exogenous input under the baseline model.33

Figure 8 depicts estimates of the local uncertainty prices associated with the two shocks

using the three specifications of ξ presented in Table 1. These estimates were obtained

33Stochastic volatility models introduce new risks to be priced while also inducing fluctuations in the
prices of the “original” risks. The mechanism in this paper simultaneously enhances and induces fluctua-
tions in the uncertainty prices, but it introduces no new sources of risk. Instead, the mechanism features
investors’ responses to their uncertainty about those risks.
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Figure 8: Local uncertainty prices of the direct capital shock (dashed) and the long-run
risk shock (solid) for the economy with a single capital stock. The state-dependent twist-
ing functions ξrκs and ξrβs are induced by worrisome models prαz, rκq “ p´.002, .005q and

prαz, rβq “ p´.002, 1.215q, respectively. The constant twisting function is associated with
rαz “ ´.005. In all cases, q “ .2. We evaluate `˚pz0, θq using z̄ as the initial state for the
calculations. NBER recessions are shaded.

by first using the Kalman filter to estimate pZt “ ErZt|∆ logCt, . . . ,∆ logC1s under the

baseline model of section 6.1.4.34 For each twisting function, we then constructed a bivariate

time series model (42) for the two Brownian shocks using the implied worst-case distortion.

These series are depicted in Figure 8. Evidently, the estimated uncertainty prices from

the state-dependent twisting functions all fluctuate over time in a countercyclical manner.

These fluctuations arise because both shocks hit the long-run risk state and so affect the

“size of the entropy ball” through ξpzq. This makes uncertainty prices increase during times

of diminished expected consumption growth. Fluctuations are proportional since they are

constructed as an affine function of the single state variable Z.

Consistent with our findings in section 6.1.4, both ξrκs and ξrβs induce uncertainty prices

that are on average lower than those arising from a constant ξ. This is due to the fact

that the minimizing agent chooses to distort the baseline intercepts relatively less in order

also to distort κ and β. As we saw before, this trade-off is most pronounced for ξrβs.

Concerns about the exposure parameter β imply uncertainty prices that are relatively low

on average but exhibit large fluctuations. In fact, as a result of the exceptionally high

34We initialized the Kalman filter at the stationary distribution of Z under the baseline model.
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long-run consumption growth expectations, the uncertainty price of the growth rate shock

becomes slightly negative in the 1950’s, indicating that during this period the investor

feared positive shocks to Z because of how they relax the minimizing agent’s constraint.

7.2 Economies with two capital stocks

Although uncertainty prices do not have an affine representation in our settings with two

capital stocks, they still equal ´H˚pR,Zq, where H˚ is a vector of worst-case distortions

to the Brownian shocks. In these settings, Ut also depends on the distribution of capital

R. To use twisting functions that are comparable with our previous results, we follow the

calibration strategy discussed in the beginning of section 6.2.35 Moreover, to make settings

with three shocks comparable with the single capital economy, we construct exposure to an

equally weighted sum of the first two shocks scaled to have a unit variance. We compare

the uncertainty price of the shock to capital to that for the long-run shock to the growth

rate in the section 6.2.1 (symmetric returns) and the section 6.2.2 (asymmetric returns)

economies.

Figure 9 displays stationary distributions of the two components of local uncertainty

prices under the baseline state dynamics with robust controls. Regarding the twisting

functions, we see similar effects as before: in both economies, uncertainty prices implied

by ξrβs exhibit lower means and much larger variances than those implied by ξrκs.

In more detail, in the economy with symmetric returns to capital depicted by solid lines,

uncertainty prices appear to have very similar properties to those for the single-capital case.

This because these prices are independent of the capital distribution R:36 the dispersion in

these prices arises solely from their dependence on Z introduced by the twisting functions.

In particular, as we saw in the previous subsection, ξrκs and ξrβs imply local uncertainty

prices that are decreasing in Z.

On the other hand, the endogenous positive correlation between the two state variables

in the economy with asymmetric capital stocks (dotted lines) makes uncertainty prices

depend both the long-run risk state and on the capital distribution. In particular, the

35We use parameter values that ensure that in all cases q “ .2 and that the unconditional means of
the drift and volatility of equilibrium consumption growth equal those estimated from U.S. data. With
symmetric returns to capital, ξrκs and ξrβs are constructed from prαz, rκq “ p´.0015, .005q and prαz, rβ1, rβ2q “
p´.0015, 1.194, 1.184q, respectively. With asymmetric returns to capital, ξrκs and ξrβs are constructed from

prαz, rκq “ p´.0023, .005q and prαz, rβ1, rβ2q “ p´.0023, 1.194, 1.194q, respectively.
36More precisely, although the individual idiosyncratic shock prices depend on R due to these shocks’

R-dependent contributions to the volatility of aggregate capital σK (see (39)), symmetry and our way of
considering a composite shock with equal weights that offsets this R-dependence.
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Figure 9: Stationary distributions of local uncertainty prices induced by the two state-
dependent twisting functions in economies with symmetric (solid) and asymmetric (dotted)
returns to capital. Prices are plotted under the stationary distribution of the baseline model
with robust controls. The left panel shows the uncertainty price of an equally weighted
sum of the first two idiosyncratic capital shocks scaled to have a unit variance.

amplification effect of Z on shocks to R o observed earlier increases the uncertainty price of

“shock to capital” relative to the symmetric economy. In contrast, the price of the growth

rate shock is much lower. This follows from the fact that with pβ1 ‰ pβ2, the investor can

affect the exposure of her consumption to Z, thereby moderating her fears of negative

growth rate shocks. This channel makes negative uncertainty prices of the long-run risk

shock much more frequent than what we saw in the economy with a single capital stock or

in the economy with symmetric returns.

8 Concluding remarks

As we noted at the outset, Box and Tiao (1977) proposed a statistical procedure for iden-

tifying components of the time series that are most persistent. We view our paper as

complementary to theirs. Since their procedure is statistical in nature, in practice it re-

sults in an imperfect extraction. By posing a representative investor’s decision problem

and deducing associated shadow prices of uncertainty, we identify components of the dy-

namic evolution of the macroeconomy associated with the most relevant uncertainties.

Our approach highlights how long-term growth uncertainty and its persistence activate a

representative investor’s aversions to statistical ambiguity and potential model misspecifi-

cations. Our analysis thus connects statistical challenges analyzed by Box and Tiao (1977)

to decision problems in modern models of the macroeconomy and financial markets.
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We close by mentioning again that the dynamic version of the max-min preferences

axiomatized by Gilboa and Schmeidler (1989) fails to be dynamically consistent in a sense

formalized by Epstein and Schneider (2003). Nevertheless, our section 4 decision problem

can be computed recursively using an HJB equation, and the associated preferences satisfy

recursively constructed robustness bounds at all subsequent dates along a decision tree.

As an alternative, section 5 described a two-player game that differs in subtle ways from

the section 4 game that we use in all of the quantitative illustrations in this paper. The

computations reported in appendix B confirm that the section 4 and 5 games lead to

decision rules that are quantitatively very similar.

Hansen and Sargent (2019, 2018) describe a conceptually and substantively different

way to attain dynamic consistency that does not introduce the distinct statistician of

section 5; but they do so at the cost of possibly losing admissibility. While the section 4

formulation used throughout this paper is within the class of max-min utility axiomatized

by Gilboa and Schmeidler (1989), Hansen and Sargent (2018) instead used the broader

class of preferences rationalized by Maccheroni et al. (2006a). In contrast to the findings

for the single-capital-stock economy of section 6, Hansen and Sargent (2018) find that a

representative investor’s concerns about persistence depend substantially in both sign and

magnitude on the macroeconomy’s growth state.
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Appendices

A Relative entropy neighborhoods reconsidered

We prove the inequality stated in Proposition 3.2. Define the probability measure condi-

tioned on X0 “ x implied by the martingale MH and construct the product probability

measure that includes the time dimension by using the density δ expp´δtq over t ě 0 for

any δ ą 0. Call the expectation operator (conditioned on X0 “ x) associated with this

measure EH and use it to define the norm

}H}H
.
“
`

EH
|H|2

˘1{2

For notational convenience leave the conditioning implicit. Notice that we can express

p∆
`

MH , 1
˘

“
1

2
}H}2H and p∆

´

MH ,M
pS
¯

“
1

2
}H ´ pS}2H

Define

τ
.
“ min

H
δ

ż 8

0

expp´δτqE
“

MH
τ ξpXτ q | F0

‰

dτ “ min
H

EH
rξpXqs.

Suppose now that

}pS}2H ď λ2EH
rξpXqs and }H ´ pS}2H ď p1´ λq

2τ.

By the Triangle Inequality and the concavity of the square root function

}H}H ď }H ´ pS}H ` }pS}H ď λ
`

EH
rξpXqs

˘1{2
` p1´ λqτ 1{2

ă
`

λEH
rξpXqs ` p1´ λqτ

˘1{2
ď
`

EH
rξpXqs

˘1{2

Consequently, %
`

MH ; ξ
˘

ă 0.

B Results for the game with a statistician

The following table is a counterpart of Table 1 in section 6.1.4. The only difference is the

way the worst-case models are computed. While for Table 1 we use the zero-sum game
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formulation in section 4, for Table 3 we use the statistician’s game discussed in section 5.

q rαz rκ rβ αc β αz κ ∆c̄ mz sz

Baseline

0.000 0.000 0.014 1.000 0.484 1.000 0.000 0.014 0.000 0.000 0.163

State-dependent ξrκs

0.100 -0.002 0.010 1.000 0.460 1.005 -0.003 0.013 -0.218 -0.193 0.167
0.200 -0.003 0.010 1.000 0.436 1.005 -0.005 0.013 -0.436 -0.386 0.167

0.100 -0.000 0.005 1.000 0.467 1.028 -0.002 0.010 -0.208 -0.186 0.193
0.200 -0.001 0.005 1.000 0.451 1.028 -0.004 0.010 -0.429 -0.385 0.193

State-dependent ξrβs

0.100 -0.002 0.014 1.157 0.465 1.028 -0.002 0.010 -0.209 -0.185 0.193
0.200 -0.003 0.014 1.199 0.459 1.053 -0.002 0.006 -0.410 -0.366 0.240

0.100 -0.000 0.014 1.164 0.468 1.031 -0.002 0.010 -0.206 -0.184 0.198
0.200 -0.001 0.014 1.208 0.467 1.062 -0.002 0.005 -0.390 -0.352 0.267

Table 3: Worst-case parameter values implied by the section 5 formulation when ξ is
defined by (30). The change in the long run consumption growth expectation is denoted

by ∆c̄
.
“

`

αc `
βαz
κ

˘

´

´

pαc `
pβpαz
κ̂

¯

. Note that
´

pαc `
pβpαz
κ̂

¯

“ .484. mz and sz denote the

unconditional mean and standard deviation of Z under the worst-case model.

C Robust value functions

We provide formulas and discuss methods to compute the value function for the robust

control problem in section 6. The state vector is

Xt
.
“ rlogKt, Lt, Zt ´ z̄s

1 logKt
.
“ log

´

K
p1q
t `K

p2q
t

¯

Lt
.
“ logK

p2q
t ´ logK

p1q
t

Define the ratio

Rt
.
“

K
p2q
t

K
p1q
t `K

p2q
t

“
exppLtq

1` exppLtq
.

The period utility function is

υpX,Dq “ δ log
`

p1´Rq
`

A1 ´D
p1q
˘

`R
`

A2 ´D
p2q
˘˘

` δ logK
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where we used the resource constraint

Ct “
”

p1´Rtq

´

A1 ´D
p1q
t

¯

`Rt

´

A2 ´D
p2q
t

¯ı

Kt.

Denote expected capital growth Et

”

dK
piq
t {K

piq
t

ı

for i “ 1, 2 as

ϕi

´

D
piq
t , Zt

¯

.
“ D

piq
t ´

φi
2

´

D
piq
t

¯2

` p.01q
´

pαz ` pβZt

¯

State variables then follow

d logKt “

«

ϕ1p1´Rtq ` ϕ2Rt ´
p.01q2 |σ1p1´Rtq ` σ2Rt|

2

2

ff

dt` p.01q rσ1p1´Rtq ` σ2Rts ¨ dWt

dLt “

„

ϕ2 ´ ϕ1 ´
p.01q2

2

`

|σ2|
2
´ |σ1|

2
˘



dt` p.01q rσ2 ´ σ1s ¨ dWt

dZt “ ´pκ pZt ´ z̄q dt` σz ¨ dWt

Using Ito’s lemma, we can derive the following dynamics for Rt:

dRt “ Rtp1´Rtq
“

ϕ2 ´ ϕ1 ` p.01q2
`

|σ1|
2
p1´Rtq ´ |σ2|

2Rt ` σ
1
1σ2p2Rt ´ 1q

˘‰

dt`

`Rtp1´Rtqp.01q rσ2 ´ σ1s ¨ dWt.

Let σ denote the stacked volatility matrix

σpXtq
.
“

»

—

–

p.01q pσ11p1´Rtq ` σ
1
2Rtq

p.01qrσ2 ´ σ1s
1

σ1z

fi

ffi

fl

.

We seek a value function V pXq “ logK ` νpL,Zq that solves the HJB equation

0 “ max
dp1q,dp2q

min
h

δ log
`

p1´ rq
`

A1 ´ d
p1q
˘

` r
`

A2 ´ d
p2q
˘˘

´ δνpl, zq `
`

2

“

|h|2 ´ ξpzq
‰

`

«

ϕ1p1´ rq ` ϕ2r ´
p.01q2 rσ1p1´ rq ` σ2rs

2

2
` p.01qrp1´ rqσ1 ` rσ2s ¨ h

ff

` νlpl, zq

„

ϕ2 ´ ϕ1 ´
p.01q2

2

`

|σ2|
2
´ |σ1|

2
˘

` p.01qrσ2 ´ σ1s ¨ h
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` νzpl, zq r´pκpz ´ z̄q ` σz ¨ hs `
1

2
tr pVxxσσ

1
q (43)

where

tr pVxxσσ
1
q “ p.01q2|σ2 ´ σ1|

2νllpl, zq ` 2p.01q prσ2 ´ σ1s ¨ σzq νlzpl, zq ` |σz|
2νzzpl, zq.

We assume that a Bellman-Isaacs condition holds so that first-order conditions can be

stacked

δp1´ rq

p1´ rqpA1 ´ dp1qpl, zqq ` rpA2 ´ dp2qpl, zqq
“
`

1´ φ1d
p1q
pl, zq

˘

r1´ r ´ νlpl, zqs (44)

δr

p1´ rqpA1 ´ dp1qpl, zqq ` rpA2 ´ dp2qpl, zqq
“
`

1´ φ2d
p2q
pl, zq

˘

rr ` νlpl, zqs (45)

hpl, z, `˚q “ ´
1

`˚
σ1prq

»

—

–

1

νlpl, zq

νzpl, zq

fi

ffi

fl

. (46)

These equations determine optimal investment-capital ratios dp1qpl, zq and dp2qpl, zq, and also

the worst-case drift distortion hpl, zq. Here `˚ is the multiplier that makes the minimizing

agent’s constraint bind for a given initial pl0, z0q:

`˚pl0, z0q “ arg max
`

νpl0, z0, `q.

C.1 Single capital stock

The “boundaries” r “ 0 and r “ 1 can be described in terms of two single-capital economies.

The HJB equation becomes

0 “ max
dpiq

min
h

δ logpAi ´ dpiqq ´ δνpzq `
`

2

“

|h|2 ´ ξpzq
‰

` (47)

`

«

dpiq ´
φi
2
rdpiqs2 ` p.01q

´

pαi ` pβiz̄ ` pβipz ´ z̄q
¯

´
p.01q2 |σi|

2

2
` p.01qσi ¨ h

ff

`

` νzpzq r´pκpz ´ z̄q ` σz ¨ hs `
1

2
tr pVxxσσ

1
q
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with i “ 1 when r “ 0 and i “ 2 when r “ 1. The optimal choice dpiq is given by (44),

namely,

d˚ “
1

2

»

–Ai `
1

φi
´

d

ˆ

1

φi
´Ai

˙2

`
4δ

φi

fi

fl

With ξpzq “ ξ0 ` 2ξ1pz ´ z̄q ` ξ2pz ´ z̄q
2, the value function νpzq is quadratic

νpz, `q “
1

2

“

ν0p`q ` 2ν1p`qpz ´ z̄q ` ν2p`qpz ´ z̄q
2
‰

;

ν0p`q, ν1p`q, ν2p`q can be obtained by plugging optimal policies into HJB equation (47) and

matching coefficients

ν2p`q “ ´`

«

δ ` 2pκ´
a

pδ ` 2pκq2 ´ 4|σz|2ξ2
2|σz|2

ff

.
“ ´`ω2

ν1p`q “
´`ξ1 ` p.01qpβi ` p.01qω2pσi ¨ σzq

δ ` pκ´ ω2|σz|2

δν0p`q “
1

δ

"

2

„

δ logpAi ´ d˚q ` d˚ ´
φi
2
pd˚q2 ` p.01q

´

pαi ` pβiz̄
¯



´p.01q2|σi|
2
´ `ξ0 ` ν2p`q|σz|

2
´

1

`
|p.01qσi ` σzν1p`q|

2

*

.

For a given initial z0, the multiplier `˚ satisfies

`˚pz0q “ arg max
`

1

2

“

ν0p`q ` 2ν1p`qpz0 ´ z̄q ` ν2p`qpz0 ´ z̄q
2
‰

.

C.2 Numerical Method

For the value function νpl, zq in the two-capital-stock problem, we solve HJB equation (43)

numerically using the finite difference method with implicit upwind scheme described by

Candler (2001) and the Online Appendix of Achdou et al. (2017). We construct a two-

dimensional grid for l and z, so that pl, zq P r´l‹, l‹sˆr´z‹, z‹s. We set l‹ “ 20 and z‹ “ 1.2.

For a given `, we use the finite difference method to derive the function νpli, zj; `q on the

grid. To initialize iterations, we exploit that the value functions at the r “ 0 pl “ ´8q
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and r “ 1 pl “ 8q boundaries are known (with z as their only argument); we extend these

function to the whole grid by linearly interpolating between them (over l). Using formulas

from Appendix C.1, we can also derive `˚p´8, z0q and `˚p8, z0q. We find the optimal

multiplier `˚pl0, z0q at a given pl0, z0q by maximizing νpl0, z0; `q with respect to `. A good

initial guess for the optimizer is `0 “ `˚p´8,z0q``˚p8,z0q
2

.

51



References

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll.

2017. Income and Wealth Distribution in Macroeconomics: A Continuous-Time Ap-

proach. Working Paper 23732, National Bureau of Economic Research.

Anderson, Evan W., Lars Peter Hansen, and Thomas J. Sargent. 2003. A Quartet of

Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection.

Journal of the European Economic Association 1 (1):68–123.

Ang, Andrew and Monika Piazzesi. 2003. A No-Arbitrage Vector Autoregression of the

Term Structure Dynamics with Macroeconomic and Latent Variables. Journal of Mon-

etary Economics 50:745–787.

Bhandari, Anmol. 2014. Doubts, Asymmetries, and Insurance. University of Minnesota.

Box, George E. P. and George C. Tiao. 1977. A Canonical Analysis of Multiple Time Series.

Biometrika 355–365.

Brunnermeier, Markus K. and Jonathan A. Parker. 2005. Optimal Expectations. American

Economic Review 95 (4):1092–1118.

Candler, Graham. 2001. Finite-Difference Methods for Continuous-Time Dynamic Pro-

gramming. In Computational Methods for the Study of Dynamic Economies, edited by

Ramon Marimon and Andrew Scott. Cambridge, England: Cambridge University Press.

Chen, Xiahong, Lars Peter Hansen, and Jose Scheinkman. 2009. Nonlinear Principal Com-

ponents and Long-run Implications of Multivariate Diffusions. The Annals of Statistics

37 (6B):4279–4312.

Chen, Zengjing and Larry Epstein. 2002. Ambiguity, Risk, and Asset Returns in Continuous

Time. Econometrica 70:1403–1443.

Cooper, Russell W. and John C. Haltiwanger. 2006. On the Nature of Capital Adjustment

Costs. The Review of Economic Studies 73 (3):611–633.

Eberly, Janice C and Neng Wang. 2011. Reallocating and Pricing Illiquid Capital: Two

Productive Trees.

52



Epstein, Larry G. and Martin Schneider. 2003. Recursive Multiple-Priors. Journal of

Economic Theory 113 (1):1–31.

Fleming, Wendell H. and William M. McEneaney. 1995. Risk-Sensitive Control on an

Infinite Time Horizon. SIAM Journal on Control and Optimization 33 (6):1881–1915.

Gallant, A. Ronald, Peter E. Rossi, and George Tauchen. 1993. Nonlinear Dynamic Struc-

tures. Econometrica 61 (4):871–907.

Gilboa, Itzhak and David Schmeidler. 1989. Maxmin Expected Utility with Non-unique

Prior. Journal of Mathematical Economics 18 (2):141–153.

Good, Irving J. 1952. Rational Decisions. Journal of the Royal Statistical Society. Series

B (Methodological) 14 (1):pp. 107–114.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-

jil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets.

In Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 2672–2680. Curran As-

sociates, Inc.

Hansen, Lars Peter and Thomas J. Sargent. 2001. Robust Control and Model Uncertainty.

American Economic Review 91 (2):60–66.

———. 2008. Robustness. Princeton, New Jersey: Princeton University Press.

———. 2010. Fragile Beliefs and the Price of Uncertainty. Quantitative Economics

1 (1):129–162.

———. 2018. Macroeconomic Uncertainty Prices when Beliefs are Tenuous. University of

Chicago.

———. 2019. Structured Uncertainty and Model Misspecification. Tech. Rep. 3280597,

SSRN Working Paper.

Hansen, Lars Peter, Thomas J. Sargent, and Thomas D. Tallarini. 1999. Robust Permanent

Income and Pricing. The Review of Economic Studies 66 (4):873–907.

53



Hansen, Lars Peter, Thomas J. Sargent, Gauhar A. Turmuhambetova, and Noah Williams.

2006. Robust Control and Model Misspecification. Journal of Economic Theory

128 (1):45–90.

Hansen, Lars Peter, John C. Heaton, and Nan Li. 2008. Consumption Strikes Back?:

Measuring Long Run Risk. Journal of Political Economy .

James, Matthew R. 1992. Asymptotic Analysis of Nonlinear Stochastic Risk-Sensitive

Control and Differential Games. Mathematics of Control, Signals and Systems 5 (4):401–

417.

Jiang, Ruiwei and Yongpei Guan. 2018. Risk-Averse Two-Stage Stochastic Program with

Distributional Ambiguity. Operations Research .

Karantounias, Anastasios G. 2013. Managing Pessimistic Expectations and Fiscal Policy.

Theoretical Economics 8 (1).

Koop, Gary, M. Hashem Pesaran, and Simon M. Potter. 1996. Impulse response analysis

in nonlinear multivariate models. Journal of Econometrics 74 (1):119 – 147.

Liu, Yongchao, Alois Pichler, and Huifu Xu. 2018. Discrete Approximation and Quan-

tification in Distributionally Robust Optimization. Mathematics of Operations Research

forthcomin.

Maccheroni, Fabio, Massimo Marinacci, and Aldo Rustichini. 2006a. Ambiguity Aver-

sion, Robustness, and the Variational Representation of Preferences. Econometrica

74 (6):1447–1498.

———. 2006b. Dynamic Variational Preferences. Journal of Economic Theory 128:4–44.

Petersen, Ian R., Matthew R. James, and Paul Dupuis. 2000. Minimax Optimal Control

of Stochastic Uncertain Systems with Relative Entropy Constraints. Automatic Control,

IEEE Transactions on 45 (3):398–412.

Piazzesi, Monika, Juliana Salomao, and Martin Schneider. 2015. Trend and Cycle in Bond

Premia. Tech. rep., Stanford University.

Strzalecki, Tomasz. 2011. Axiomatic Foundations of Multiplier Preferences. Econometrica

79 (1):47–73.

54
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