Online Appendix

This online appendix supports the paper “Twisted Probabilities, Uncertainty, and
Prices” by Lars Peter Hansen, Balint Szoke, Lloyd S. Han, and Thomas J. Sargent.

A Relative entropy neighborhoods reconsidered

We prove the inequality stated in Proposition 3.2. Define the probability measure condi-
tioned on X, = z implied by the martingale M and construct the product probability
measure that includes the time dimension by using the density d exp(—dt) over t > 0 for
any d > 0. Call the expectation operator (conditioned on Xy = z) associated with this

measure F and use it to define the norm
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For notational convenience leave the conditioning implicit. Notice that we can express
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Suppose now that
|S15 < NE"[E(X)] and |H =S| < (1=2)°7.
By the Triangle Inequality and the concavity of the square root function

|H|g < |H = Sl + [8]m < A (B X)) + (1= 2)r's2

< (AEH[E(X)] + (1~ /\)7_)1/2 < (EHK(X)DW
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B Results for the game with a statistician

The following table is a counterpart of Table 1 in section 6.1.4. The only difference is the
way the worst-case models are computed. While for Table 1 we use the zero-sum game

formulation in section 4, for Table B.1 we use the statistician’s game discussed in section

Baseline

0.000 | 0.000 | 0.014 | 1.000 | 0.484 | 1.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.163
State-dependent £[%

0.100 | -0.002 | 0.010 | 1.000 || 0.460 | 1.005 | -0.003 | 0.013 || -0.218 | -0.193 | 0.167
0.200 | -0.003 | 0.010 | 1.000 || 0.436 | 1.005 | -0.005 | 0.013 || -0.436 | -0.386 | 0.167

0.100 | -0.000 | 0.005 | 1.000 || 0.467 | 1.028 | -0.002 | 0.010 || -0.208 | -0.186 | 0.193
0.200 | -0.001 | 0.005 | 1.000 || 0.451 | 1.028 | -0.004 | 0.010 || -0.429 | -0.385 | 0.193

State-dependent ¢1°]

0.100 | -0.002 | 0.014 | 1.157 || 0.465 | 1.028 | -0.002 | 0.010 || -0.209 | -0.185 | 0.193
0.200 | -0.003 | 0.014 | 1.199 || 0.459 | 1.053 | -0.002 | 0.006 | -0.410 | -0.366 | 0.240
0.100 | -0.000 | 0.014 | 1.164 || 0.468 | 1.031 | -0.002 | 0.010 || -0.206 | -0.184 | 0.198
0.200 | -0.001 | 0.014 | 1.208 || 0.467 | 1.062 | -0.002 | 0.005 || -0.390 | -0.352 | 0.267

Table B.1: Worst-case parameter values implied by the section 5 formulation when £ is
defined by (30). The change in the long run consumption growth expectation is denoted

by Ac = (ac + 6az) — <@c + B%) Note that <&c + B’%) = 484. m, and s, denote the
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unconditional mean and standard deviation of Z under the worst-case model.

C Robust value functions

We provide formulas and discuss methods to compute the value function for the robust

control problem in section 6. The state vector is
X, = [logK:, Ly, Z— 2] log K, = log (KF) + Kt(2)> Ly =log K —log K

Define the ratio e
K, ) ~exp(Ly)

R = _ .
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The period utility function is
v(X,D) =¢log (1 - R) (A — DY) + R (Ay — D?P)) +5log K
where we used the resource constraint
C, = [(1 “R) <A1 . Dt(”) + R, <A2 . Dﬁ”)] K,.

Denote expected capital growth F; [th(i) /Kt(i)] fori=1,2 as
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State variables then follow

(01)*[or(1 = R) + 0o Ry [*

; dt + (.01) [o1(1 — R,) + ouR,] - AW,

leg Kt = [@1(1 — Rt) + QOQRt —

.01)2
st: [&2—801—( 2)

dZt = —/I%<Zt—2) dt+0z'th
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Using Ito’s lemma, we can derive the following dynamics for R;:

dR; = R(1 — Ry) [02 — 1 + (.01)* (|01 [*(1 — Ry) — |oo|*Re + 0102(2R, — 1)) ] dt+
+ Rt(l - Rt)<01) [0'2 - 0'1] : th

Let o denote the stacked volatility matrix

(.01) (¢} (1 = Ry) + o5 Ry)
o(Xy) = (.01)[o2 — a1
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We seek a value function V(X) = log K + v(L, Z) that solves the HJB equation
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where

tr (Voeoo') = (.01)% o2 — o1 [Pvy(l, 2) + 2(.01) ([o2 — 1] - 02) v (1, 2) + |02 ). (1, 2).

We assume that a Bellman-Isaacs condition holds so that first-order conditions can be
stacked
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These equations determine optimal investment-capital ratios dV) (1, z) and d®(1, z), and also
the worst-case drift distortion h(l, z). Here £* is the multiplier that makes the minimizing

agent’s constraint bind for a given initial (ly, zo):

*(lo, 20) = arg max v(lo, 20, 0).

C.1 Single capital stock

The “boundaries” r = 0 and r = 1 can be described in terms of two single-capital economies.

The HJB equation becomes
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with i = 1 when » = 0 and i = 2 when 7 = 1. The optimal choice d¥) is given by (C.2),
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With £(2) = & + 2&1(2 — 2) + &(2 — 2)?, the value function v(z) is quadratic

namely,

v(z,l) = % [6(0) + 201 (0) (2 — 2) + va() (2 — 2)?] ;

(), v1(0), va(f) can be obtained by plugging optimal policies into HJB equation (C.5)

and matching coefficients

0+ 2Kk — /(0 + 2K)%? — 4|0, |?
V2(£)=—£[ + 2R \/(2|+ ‘:) \a\ﬁzli_&%
0.

L&+ (01 + (01w (o, - 0,)
a d + R — wo|o,|?

i
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For a given initial zy, the multiplier ¢* satisfies

0*(zg) = arg max % [0 (0) + 201 (0) (20 — 2) + 12(0) (20 — 2)?] -

C.2 Numerical Method

For the value function v(l, z) in the two-capital-stock problem, we solve HJB equation (C.1)
numerically using the finite difference method with implicit upwind scheme described by
Candler (2001) and the Online Appendix of Achdou et al. (2017). We construct a two-
dimensional grid for [ and z, so that (I, z) € [—{*, I*] x[—2*, 2*]. Weset I* = 20 and z* = 1.2.



For a given ¢, we use the finite difference method to derive the function v(l;, z;;¢) on the
grid. To initialize iterations, we exploit that the value functions at the r = 0 (I = —0)
and r = 1 (I = o) boundaries are known (with z as their only argument); we extend these
function to the whole grid by linearly interpolating between them (over [). Using formulas
from Appendix C.1, we can also derive ¢*(—00,z) and ¢*(c0, z5). We find the optimal

multiplier ¢*(lo, z0) at a given (ly, z0) by maximizing v(l, zo; ¢) with respect to £. A good
*(700,,20)‘%@*(&’)@0)
5 .

initial guess for the optimizer is (0 = *
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