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Abstract
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about key features of the yield curve are in line with the data, and (2) the degree of pessimism
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derive model implied interest rate forecasts and compare them with analogous survey expectations.
I find that the model can replicate the dynamics and average level of bias found in the survey.
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1 Introduction

Survey expectations are commonly thought to provide valuable information about ‘subjective’ beliefs.1

Interestingly, these measures often display large and systematic differences compared to ‘objective’ fore-
casts from estimated statistical models. By way of illustration, Piazzesi, Salomao, and Schneider (2015)
provide evidence that financial forecasters’ expectations about future interest rates are formed as if the
forecasters believed that the dynamics of yield curve were more persistent than they appear with hind-
sight. Although findings like this are important first steps to understanding belief formation, they leave
unanswered the question: why do beliefs deviate from the observable dynamics?

Building on the robust control model of Hansen et al. (2020), this paper offers a potential answer by
presenting a particular mechanism of belief formation and proposing a general method to evaluate its
plausibility as an explanation for the seeming inconsistencies between survey expectations and realized
time series. Robust control theory supplies a model of subjective beliefs, providing testable predictions
about how these beliefs deviate from forecasts derived from fitted statistical models. In particular, model
implied beliefs distort physical probabilities by overweighting states with adverse utility consequences,
yielding expectations that are pessimistic relative to the observable state dynamics.

Importantly, while this theory departs from rational expectations, it provides a set of powerful cross-
equation restrictions between the decision maker’s preferences, beliefs, and environment. Studying an
endowment economy with a robust representative household that faces an endowment stream subject
to long-run risk, I use these restrictions along with data on interest rates, consumption, and inflation to
estimate the model parameters. In doing so, I switch viewpoint and consider robust control theory as a
particular model for the stochastic discount factor. Using the estimated model, I derive implied interest
rate expectations and contrast them with analogous forecasts from the Blue Chip Financial Forecasts
(BCFF) survey. Assuming that these are good proxies for beliefs allows me (1) to test the model’s
prediction about pessimistic beliefs, and (2) to gain insights into how expectations are formed.

I find that the model implied belief well approximates the average forecast bias of professional forecasters
for various maturity and forecast horizons. The model can also reproduce the finding of Piazzesi,
Salomao, and Schneider (2015) that, under the subjective (or survey) belief, both the level and the slope
of the nominal yield curve appear to be more persistent than what the observed yields suggest. On the
other hand, the volatility of model implied expected yield changes falls short of the survey analogues,
which indicates that the increased persistence that I estimate from observed prices might be somewhat
excessive from the viewpoint of the surveys.

My decision maker acknowledges that her baseline model can only approximate her environment, so,
rather than using a single model, she considers a set of alternatives that are difficult to distinguish from
the baseline. Seeking a decision rule that is robust to these alternative models, she ends up discovering
a worst-case model to which she responds optimally. Being a probability distribution that justifies
the robust decision rule as a best response to beliefs, this worst-case model can be interpreted as the

1For conceptual and methodological issues related to survey expectations, see Pesaran and Weale (2006).
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decision maker’s subjective belief. Hansen and Sargent (2001) represent a set of models as a collection of
likelihood ratios whose relative entropies with respect to a baseline are bounded by a single parameter
encoding the decision maker’s desired degree of robustness. Hansen et al. (2020) refine this setting by
introducing a new object, ξ, a nonnegative state dependent function, meant to guarantee that certain
parametric models are included in the set. Twisting the set toward parametric alternatives embodies
the decision maker’s parameter uncertainty.

I use a multivariate extension of their model with a quadratic ξ that is well-suited to direct the agent’s
misspecification concerns to the persistence of the baseline dynamics. As a comparison, I also consider
the special case of constant ξ, which gives back the original Hansen and Sargent (2001) model with
unstructured uncertainty that has well-known close connections with recursive utility of Duffie and
Epstein (1992). The question then arises as to how important the state dependence of ξ might be.
I demonstrate that it is essential to replicate robust features of the interest rate data. In particular,
however large I set the risk aversion parameter, recursive utility with a unitary elasticity of substitution
cannot generate an upward sloping average nominal yield curve—at least when the agent’s belief is
described by a (well-fitting) statistical model assumed in this paper.

In contrast, by allowing for state dependence in ξ, the model not only replicates the observed average
nominal yield curve, but it also generates substantial fluctuations in nominal yields with long maturities,
features that are strongly backed by the data, but that a constant ξ fails to account for. Fluctuations in
long-term yields are implications of state dependent, counter-cyclical market prices of model uncertainty2

that emerge from the agent’s concerns that the persistence of the baseline dynamics is misspecified. The
estimated worst-case suggests that she is most worried that inflation is more persistent and that the
correlation between consumption growth and lagged inflation is more negative than in her baseline model.
This invites a reinterpretation of the ‘bad news’ channel of Piazzesi and Schneider (2007) in terms of
model uncertainty.

Combining recursive utility with sufficiently high risk aversion and a particular long-run risk feature of
their data set, Piazzesi and Schneider (2007) obtain an upward sloping nominal yield curve. Underlying
this result is their finding that inflation predicts low future consumption growth. My failure to replicate
a positive term premium with recursive utility follows from the fact that the forecasting ability of infla-
tion is more modest in my sample, signaling its fragility in the data.3 Misspecification concerns about
that feature therefore seem plausible and indeed, this is what I find by looking at the data through the
lens of the estimated worst-case model. One advantage of this interpretation, emphasized by Barillas,
Hansen, and Sargent (2009), is that implausibly large risk aversion parameters can be replaced with
plausible concerns about robustness to (specific kinds of) misspecifications. Calculating a detection
error based measure associated with the estimated worst-case model, I show that the agent’s belief is

2That is, the compensation for facing ambiguity about the distribution of shocks. Ambiguity can amplify and induce
fluctuations in prices of exposures to the original shocks without introducing extra shocks (with known risk).

3The main difference between the two data sets is that theirs ends in 2005:Q4, while mine goes on until 2019:Q4.
Using the shorter sample and a scalar ξ (recursive utility), I can replicate the upward sloping yield curve and the high risk
aversion that they find. Nonetheless, even in the shorter sample I find evidence for the importance of state-dependence in
the tilting function. See the Online Appendix for more details.
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indeed reasonable in the sense that it is not easily rejectable by the data.

Related Literature: The paper contributes to a literature that aims to estimate and empirically
evaluate models with robustness, that is, models in which (1) agents exhibit uncertainty aversion, and
(2) the set of priors is tightly constrained by statistical discrimination based considerations. Prominent
examples are Hansen, Sargent, and Tallarini (1999), Cagetti et al. (2002), Bidder and Smith (2012),
Bhandari, Borovička, and Ho (2019), and Hansen and Sargent (2020a). More broadly, this paper relates
to a literature focusing on the quantitative importance of ambiguity aversion in macroeconomics with
a prime example being Ilut and Schneider (2014). Although similar in spirit, their paper differs from
mine in that it is built on the alternative decision theoretic framework of Epstein and Schneider (2003),
which gives rise to more permissive restrictions on the agent’s set of priors than those used here.

The closest to my paper is the work by Bhandari, Borovička, and Ho (2019). Similar to the present
setting, they extend the model of Hansen and Sargent (2001) in ways that imply time variation in the
worst-case drift distortion, and interpret the worst-case as a subjective belief, which enables them to
utilize survey expectations in their analysis. However, instead of using surveys to evaluate the model’s
predictions, they use them to identify exogenous variations in the degree of ambiguity. Another key
difference is that they estimate a full-blown general equilibrium model with endogenous consumption.
While this allows them to investigate the impact of robustness on aggregate macro dynamics, due to
the complexity of the model, they must rely on approximations. In contrast, the endowment economy
and my functional form assumptions guarantee a tractable linear quadratic framework, at the cost of
limiting my focus to how robustness affects asset prices and beliefs.

Similar to this paper, Hansen and Sargent (2020b) consider a decision maker who entertains multiple
parametric models (so called “structured models”), but they construct the set of models relative to
which the agent seeks robustness in a different way. Instead of restricting the drift distortion process by
imposing a (state-dependent) upper bound on its intertemporal average as I do, they restrict the set of
(structured) models by introducing an instant-by-instant constraint in order for this set to be rectangular
in the sense of Epstein and Schneider (2003). Like my setting, their formulation gives rise to interesting
state-dependence in uncertainty prices, but the instant-by-instant constraint renders the computation
of the worst-case model difficult. In contrast, my formulation leads to a tractable non-linear state space
model that I can readily estimate with maximum likelihood.

An important feature of my paper’s decision problem is that the set of models is considered to be
a result of careful deliberation, that the decision maker does not seek to improve over time through
learning.4 Rather than struggling with slow learning and fully embracing one of the ‘wrong’ models,
my decision maker designs a decision rule that works well under a set of models. Hansen and Sargent
(2007) and Hansen and Sargent (2010) incorporate learning into robust decision problems. Similar to
my formulation, Hansen and Sargent (2010) study an investor who entertains two parametric models of
consumption growth, one with substantial growth rate persistence, the other with little such persistence.

4This is because eliminating the kinds of misspecifications that she worries about would require so much data that,
due to discounting the future, she simply accepts model misspecification as a permanent state of affairs.
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However, instead of using these models to construct a set of distributions around a baseline which is
twisted toward particular parametric misspecifications, the investor in Hansen and Sargent (2010) uses
observations on consumption growth to update her posterior over the two models and expresses her
misspecification concerns by pessimistically tilting that posterior distribution. This pessimistic tilting
leads to countercyclical uncertainty prices and makes the investor act as if good news is temporary and
bad news is persistent. Estimating and evaluating the asset pricing implications of their model is an
interesting challenge, which is beyond the scope of this paper.

A well-known difficulty of the long run risk model of Bansal and Yaron (2004) is that in order to
match key asset pricing moments, it relies on a highly persistent predictable component in aggregate
consumption and dividend growth rates, even though the estimated persistence levels of these growth
rates are typically much lower. In addition, the assumed high persistence leads to several counterfactual
implications for consumption growth—excessive higher-order autocorrelations of consumption growth
or excessive predictability of future consumption growth by the market-wide price-dividend ratio. The
robust control model of this paper is not subject to these criticisms, because the model which is key for
asset pricing (worst-case model) is in principle different from a model that fits the consumption series
well (baseline model). In this sense, my paper is very much in the spirit of Bidder and Dew-Becker
(2016) who offer a reinterpretation of the long run risk channel in terms of model uncertainty.

Outline: The rest of the paper is structured as follows. Section 2 summarizes the essential features of
robust preferences and the particular refinement used in this paper. It also discusses the functional form
assumptions and solves the planner’s problem to derive formulas for the equilibrium yield curve. Section
3 proposes a two-step maximum likelihood procedure to estimate the model parameters, reports details
about the estimation and discusses the results. In Section 4, I compare model implied beliefs with survey
expectations using some informative moments. Section 5 concludes with remarks on possible extensions.
The appendices contain derivations and further results.

2 Robust decision problem

I consider an endowment economy with a representative household who has robust preferences. In the
spirit of Lucas (1978), I focus on the consumption side of the economy abstracting from production or
storage, the idea being that one can price assets from marginal utilities evaluated at the equilibrium
consumption process ignoring the deeper features that made them into equilibrium outcomes. More
precisely, I suppose that the observed aggregate consumption series is induced by a robust equilibrium
decision rule of some dynamic economic model. Instead of specifying the details of this economic model,
I presume that its equilibrium exhibits a convenient statistical representation that can be depicted by a
fictitious endowment economy.

LetW denote a 2-dimensional Brownian motion on a probability space pΩ,F , P rq and let tFtutě0 denote
the completion of the filtration generated by W .5 A representative household receives a stochastic real

5I will adopt the following convention. Let X (without time subscript) denote a stochastic process, Xt the process at
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endowment stream D and faces an exogenously given price process of consumption goods P . Suppose
that both processes are multiplicative functionals6 of the Markov states X, so the nominal endowment
DP is also multiplicative. For simplicity, define the vector Y :“ rD,P s1.

The decision maker does not know the model7 that describes the law of motion of Y , but is able to
identify a set of models Z that represent its dynamics relatively well. As a result, instead of seeking a
decision rule which is optimal under a single (unknown) model, the decision maker wants decision rules
that perform “well enough” under all alternative models that she finds reasonable. Following Hansen
et al. (2020), in this paper the set Z against which the decision maker seeks robustness is characterized
by two particular parametric models: (1) the baseline model and (2) a worrisome alternative. As we
will see, the latter can be used as a vehicle to express the decision maker’s ‘parameter uncertainty’.

Baseline model: While the theory is silent about how the decision maker’s models get determined,
common sense suggests that they should represent observable time series well and should not be easily
rejectable by the data. These considerations lead to the following assumption:

Assumption 1. The decision maker’s baseline model is the ‘best’ approximation8 of the data generating
process within a particular class of parametric statistical models that fits the data well.

In spirit, Assumption 1 places the decision maker on comparable footing with us, econometricians. While
we typically have a bunch of prejudices about the form of well fitting statistical models and can use finite
samples to pin down particular parameter values, we almost never possess large enough data sets to rule
out the possibility that the data were actually generated by a model other than our point estimate.
Assumption 1 asserts that the decision maker faces similar difficulties and discovers her baseline in the
same way as an econometrician does. As a result, it provides the same economical way of endowing
her with a model as rational expectations econometrics does. Motivated by these observations, in what
follows, I will use the baseline model—occasionally called the econometrician’s model—as a stand-in for
the physical distribution, so that whenever I calculate moments under the ‘objective’ measure, I will use
the baseline model.

Suppose that the baseline model of Y exhibits the following affine form:

d log Yt “ pβ0 `Xtq dt` αdWt

dXt “ ´κXtdt` σdWt

(1)

where X is a 2-vector that contains all state variables with given initial X0. The household considers
this simple yet flexible parametric model as a good approximation to aggregate endowments and prices,9

but is concerned about hard-to-detect, welfare relevant model misspecifications.

time t, and x a realized value of the process.
6For an in-depth analysis of the properties of multiplicative functionals, see Hansen and Scheinkman (2009).
7In the following, I will use the word model to describe joint probability distributions over sequences of random

variables, a possible representation of which is a stochastic differential equation.
8I leave what ‘best’ means intentionally unspecified, because the specific loss function used to find the baseline model

is inconsequential to my analysis. In my application I estimate the baseline model with maximum likelihood, so ‘best’
means minimal Kullback-Leibler divergence.

9Indeed, the discrete time representation of (1) is identical to the state space model used by Piazzesi and Schneider
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Model misspecifications are represented as perturbations of the baseline measure obtained by multiplying
(1) with a likelihood ratio process ZH that follows

dZHt “ ZHt Ht ¨ dWt (2)

with initial condition ZH0 “ 1. Here, H is a progressively measurable vector-valued process that satisfies
şt
0 |Hs|

2ds ă 8, with probability one. Each alternative model of Y has a likelihood ratio with respect
to the baseline (1), so that one can index them by their corresponding H processes.

Worrisome model: Hansen and Sargent (2001) propose to define the decision maker’s set of models Z
as a ‘ball’ centered at her baseline model using discounted relative entropy as a measure of distance—
the idea being that relative entropy quantifies the statistical difficulty with which two models can be
distinguished from each other. With the use of relative entropy, one can include a myriad of models with
non-trivial dynamics, but its focus is unstructured in the sense that it does not let the decision maker
focus on particular parametric misspecifications. Nevertheless, expressing such “parameter uncertainty”
is possible by insisting that certain worrisome parametric alternatives are included in Z.

For instance, model (1) incorporates a long-run risk channel, similar to Bansal and Yaron (2004), in the
sense that the first entry of X is a predictable, serially correlated component of the consumption growth
process.10 Suppose that the decision maker is concerned that (1) might miscalibrate long-run features
of consumption growth and as a result, she insists that a particular worrisome model with sκ ‰ κ is
included in her set Z. More generally, worrisome parametric alternatives (to the basline model) can be
defined by the 4-tuple

`

sβ0, sφ, sβ1, sκ
˘

as

d log Yt “
`

sβ0 ` sβ1Xt

˘

dt` αdW
sH
t

dXt “
`

sφ´ sκXt

˘

dt` σdW
sH
t ,

(3)

such that the corresponding drift distortion process sH satisfies
«

α

σ

ff

sHt “

«

sβ0 ´ β0

sφ

ff

`

«

sβ1 ´ I2

κ´ sκ

ff

Xt.

Guaranteeing that an sH with sκ ‰ κ is included in Z is a way to seek robustness against different degrees
of persistence (long-run risk).

(2007) to capture the dynamics of U.S. consumption growth and inflation. As they pointed out, although this form nests
a first-order vector autoregressive process (VAR), it is more flexible due to the presence of the latent variables that allow
for first-order moving-average style dynamics, crucial to capture the long-run behavior of the inflation process.

10Additionally, the possible interaction between the state variables enables expected inflation (second entry of X) to
affect the long-run predictability of consumption growth.
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2.1 Quadratic twisting function

Building on Petersen, James, and Dupuis (2000), Hansen et al. (2020) show how to ensure that the
decision maker’s set Z includes her worrisome model—identified by the drift distortion process sH—,
thereby guaranteeing that her valuation and behavior are robust to the kinds of misspecifications that
this worrisome model represents. To this end, they introduce a time invariant, nonnegative function
ξpXtq—the so called twisting function—that they use to define the decision maker’s set as follows:

Zpξqrxs :“

"

ZH :
δ

2

ż 8

0
expp´δtqE

“

ZHt
“

|Ht|
2 ´ ξpXtq

‰

| X0 “ x
‰

dt ď 0

*

. (4)

By specifying a quadratic twisting function

ξpXtq “ | sHt|
2 “ |sh0 ` sh1Xt|

2,

one can ensure that Zpξq includes (3), because sH satisfies the condition of (4) with equality.11 In other
words, the decision maker’s entropy ball Zpξq is twisted toward her worrisome parametric model sH. In
this sense, the quadratic form and parameters of ξ encode the decision maker’s “parameter uncertainty”
about long-run consumption risk.

Motivated by this observation, in what follows, I assume that the twisting function is quadratic in X:

ξpXtq “ ξ0 `X
1
tξ2Xt “ r1, X

1
ts

»

—

–

sξ0 0 0

0 sξ1
sξ2

0 sξ2
sξ3

fi

ffi

fl

looooooomooooooon

”Ξ

«

1

Xt

ff

(5)

subject to the restriction that the matrix Ξ is positive semidefinite. In this way, I introduce 4 extra
parameters psξ0, sξ1, sξ2, sξ3q that parsimoniously capture the decision maker’s worrisome models.

An important special case is a scalar ξ ě 0. It is straightforward to see that by setting ξ “ 2ζ, one obtains
the non-twisted set of Hansen and Sargent (2001) parameterized by ζ. Furthermore, the standard robust
control model has well-known close connections to recursive utility when the intertemporal elasticity of
substitution is one, which raises the question whether the state dependence of ξ is a crucial feature or
not. Exploiting the nested nature of this relationship, I investigate this question in Section 3.3.1.

2.2 Worst-case model. . .

That Zpξq is a closed, convex set makes the max-min expected utility theory of Gilboa and Schmeidler
(1989) directly applicable. More precisely, one can formulate a two-player, zero-sum game, where the
two players are a utility maximizing decision maker and an auxiliary agent whose aim is to minimize the

11While ξ ensures that certain parametric models are included, the set Zpξq contains a many other non-parametric
models with much less structure that are statistically similar to the worrisome alternatives. In fact, as showed by Hansen
et al. (2020), the set Zpξq includes entire relative entropy neighborhoods of the parametric alternatives described with ξ.
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decision maker’s expected utility by choosing a distribution from Zpξq. This formulation is useful because
the equilibrium determines the robust decision rule and the worst-case model as optimal decisions of the
two players. The Lagrangian of the time 0 game can be written as

max
CPC

min
ZH

ż 8

0
δ expp´δtqE

„

ZHt

ˆ

upCtq `
`

2

“

|Ht|
2 ´ ξpXtq

‰

˙

| F0



dt, (6)

where ` is the multiplier associated with the restriction ZH P Zpξq and up¨q is the maximizing agent’s
period utility function. Fleming and Souganidis (1989) show how this game can be made recursive
through a Markov perfect game where every instant the players choose their decision rules as functions
of the state vector X. The justification is the so called Bellman-Isaacs condition

Assumption 2. Bellman-Isaacs: For a fixed `, there exists a value function V such that

δV pxq “ max
c

min
h

upcq `
`

2

“

|h|2 ´ ξpxq
‰

`∇Vx ¨ rµpx, cq ` σpx, cq ¨ hs `
1

2
tr
“

σpx, cq1Vxxσpx, cq
‰

“ min
h

max
c

upcq `
`

2

“

|h|2 ´ ξpxq
‰

`∇Vx ¨ rµpx, cq ` σpx, cq ¨ hs `
1

2
tr
“

σpx, cq1Vxxσpx, cq
‰

where µpx, cq and σpx, cq denote the drift and volatility terms of the states under the baseline model.

This condition defines the Hamilton-Jacobi-Bellman (HJB) equation and requires the order in which
the two players choose to be interchangeable without affecting the optimal decisions. Although the
game in which the maximizing player chooses first is closer to the idea of fear from misspecification, the
possibility of switching the order opens up another interpretation.

2.3 . . . or subjective belief

Hansen et al. (2006) provide sufficient conditions under which the Bellman-Isaacs condition is satisfied,
so in environments that meet these we can study min-max as well as the max-min games. The advantage
of this is that if the minimizing player chooses first, his choice will be the distribution with respect to
which the maximizing player’s (robust) decision rule is a best response. In other words, ex post (after the
minimizing H˚ is determined), one can look at the worst-case model as beliefs that justify the robust
decision rule. Hansen et al. (2006) demonstrate that this so called ex post Bayesian interpretation
leads to an ordinary optimal control problem, where the decision maker has full confidence in a single
model that happens to be the worst-case model, and that results in the robust decision rule. In this
interpretation, however, the ex post label is crucial. First we have to solve for the equilibrium H˚ before
we make it equal to the decision maker’s subjective belief. That is, the worst-case belief embodies not
only what the decision maker finds possible ex ante, but also what is worth considering to be possible
ex post. In this sense, subjective beliefs are endogenous and the model is interpretable as a particular
(pessimistic) mechanism of belief formation.
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2.4 Equilibrium drift distortion

One major benefit of the endowment economy assumption is that it enables us to use the planner’s
problem and the associated shadow values to derive Arrow-Debreu prices that would emerge in a decen-
tralized, competitive environment.12 The planner shares the household’s baseline model and twisting
function ξ. Suppose that the period utility function is logarithmic, upCq “ logC. There is no way to
move resources over time or states, so Ct “ Dt for all t. That being said, the max-min problem becomes
a simple minimization that affects valuation not quantities. As before, let ` be the multiplier on the
constraint Zpξq and define the planner’s value function as V px, log dq “ 1

δ log d ` υpxq that solves the
corresponding HJB equation

δV px, log dq “ min
h

log d`∇υxpxq ¨ p´κx` σhq `
1

δ
e1 ¨ pβ0 ` x` αhq`

`
1

2
tr
“

σ1υxxpxqσ
‰

`
`

2

`

|h|2 ´ ξpxq
˘

(7)

where ej is a selector vector for the jth entry. One can show (see Appendix A) that the function υpxq
is quadratic, so the worst-case drift distortion becomes affine in the states

H˚t “ ´
1

`˚

¨

˚

˝

pα1e1q ¨∇Vlog d
loomoon

“1{δ

`σ1 ∇Vx
loomoon

“υ1`υ2Xt

˛

‹

‚

“: η0 ` η1Xt (8)

where `˚ is the value of the Lagrange multiplier that makes the constraint ZH P Zpξq bind and is a
nonlinear function of the value function V .13 The coefficients η0 and η1 are 2ˆ 1 and 2ˆ 2, respectively,
and are both functions of ξ and the baseline parameters pκ, σ, β0, αq. These functions embody cross-
equation restrictions across parameters describing the environment, preferences toward robustness and ex
post beliefs. In my case, for a fixed baseline model, these restrictions essentially express the 6 unknowns
of pη0, η1q with the 4-dimensional parameter vector psξ0, sξ1, sξ2, sξ3q.14

The entries of the vector H˚ are drift distortions to the respective Brownian shocks and, as (8) suggests,
the relative magnitudes of these distortions are determined by p∇Vx,∇Vlog dq, representing how much
the continuation value is exposed to changes in the states, and pσ, αq, that is the loadings of the states on
the shocks. The distortion is larger in states where ∇Vx is relatively large and in this way the worst-case
model overweights states that the continuation value identifies as adverse. The form of H˚ is analogous
to the standard robust control model of Anderson, Hansen, and Sargent (2003), with the exception that
here the (possible) state dependence of ∇Vx is shaped by the twisting function ξ.

The affine H˚ in (8) leads to a worst-case model that belongs to the same parametric family as the
12With robust preferences, however, a non-trivial question arises: does the proposed price system induce the same

consumption rule and worst-case model as those of the planner from which the prices were derived in the first place?
Appendix B shows that the answer is affirmative.

13See (19) in Appendix A for an expression of `˚. The fact that the multiplier depends on the initial Markov state is
a tell-tale sign that my formulation assumes permanent ‘commitment’ to a worst-case model chosen at time 0, a common
feature of robust control models. See Hansen et al. (2020) for more details.

14In fact, in Section 3.3 I show that ξ̄0 turns out to be ‘redundant’ in explaining time series of interest rates.
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baseline. In particular, we can write the worst-case model as

d log Yt “ rpβ0 ` αη0q ` pI2 ` αη1qXts dt` αdĂWt “:
´

rβ0 ` rβ1Xt

¯

dt` αdĂWt

dXt “ rση0 ´ pκ´ ση1qXts dt` σdĂWt “:
´

rφ´ rκXt

¯

dt` σdĂWt

(9)

where r̈ denotes objects from the worst-case model. Therefore, while the decision maker considers a
plethora of non-parametric models with subtle, complicated dynamics against which she seeks robustness,
the model that determines her robust decision rule is particularly simple.

2.5 Robust stochastic discount factor and equilibrium yield curve

The stochastic discount factor (SDF) can be constructed by evaluating the representative consumer’s
marginal rate of substitution at the exogenous consumption process. Given the logarithmic utility
function, it follows that real and nominal marginal rate of subsitutions can be written as:

Mt :“ expp´δtq
C0

Ct
and Mnom

t :“ expp´δtq
pCP q0
pCP qt

.

As a result, the date 0 price of an arbitrary date t nominal Markov payoff ϕpXtq is given by

pϕpxq “ rE rMnom
t ϕpXtq | X0 “ xs “ E

”

ZH
˚

t Mnom
t ϕpXtq | X0 “ x

ı

. (10)

The first equality expresses the price under the investor’s subjective belief (hence the r̈ notation), while
the second equality depicts pϕ under the baseline using the equilibrium likelihood ratio, ZH˚ , as the
change of measure.15 This likelihood ratio is a multiplicative martingale capturing the impact of pes-
simistic belief distortions on equilibrium prices. Real and nominal stochastic discount factors are

St :“MtZ
H˚

t and Snomt :“Mnom
t ZH

˚

t .

Using Ito’s lemma, one can show that the dynamics of Snomt under the baseline model follow

dSnomt

Snomt

“ ´

ˆ

δ ` ι ¨ rβ0 ` ι
1
rβ1Xt ´

|ι1α|2

2

˙

looooooooooooooooooomooooooooooooooooooon

”rnompXtq

dt´
`

α1ι´H˚t
˘

looooomooooon

”ρpXtq

¨dWt (11)

with ι denoting a 2-vector of ones. After multiplying the right hand side by minus one, the drift term
gives the equilibrium nominal risk-free rate, rnom, while the volatility term, ρ, represents equilibrium
prices that are usually interpreted as local risk prices of the Brownian shocks.16 Motivated by the distinct
forces behind its two components, however, Hansen et al. (2020) reinterpret ρ as follows. The first term,
α1ι, is the price of risk defined as the risk averse investor’s compensation for bearing risk, whereas the

15As I discussed in Section 2, I use the baseline or econometrician’s model as a stand-in for the ‘objective’ measure
(denoted by E) following the standard practice in rational expectations econometrics.

16By replacing ι with e1 in the above formulas one can readily obtain the real counterparts.
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second term, ´H˚, is the uncertainty price induced by the investor’s doubts about the baseline model.
When η1 ‰ 0, the uncertainty prices and the associated uncertainty premia fluctuate over time with Xt.
Note that these fluctuations emerge endogenously from a baseline model with homoskedastic shocks as
a result of the investor’s uncertainty about those shocks.

The fact that the local mean is affine, while the local variance is quadratic in X suggests an exponential-
quadratic specification for Snomt and St, hence they fit nicely in the multi factor affine family proposed by
Duffie and Kan (1996). Consequently, I can borrow well-known formulas from the asset pricing literature
(in particular, see Section 5.1. in Borovička et al. (2011)) and express the yield curve recursively as a
function of the state vector. I am interested in the zero-coupon yield curve, which is made up of zero-
coupon bonds with different maturities. These are assets that promise to deliver one sure dollar in τ

periods. Substituting the payoff ϕ “ 1 into (10), the date t price of a zero-coupon bond with τ -maturity
is obtained by evaluating the τ -period conditional expectation of Snom

ppτqpxq “ E rSnomτ | X0 “ xs “ exp
´

apτq ` bpτq ¨ x
¯

with the coefficients apτq P R and bpτq P R2 solving the system of ordinary differential equations

d

dt
bptq1 “ ´ι1rβ1 ´ bptq

1
rκ

d

dt
aptq “ ´δ ´ ι ¨ rβ0 ` bptq

1
rφ`

1

2

ˇ

ˇα1ι´ σ1bptq
ˇ

ˇ

2
(12)

with ap0q “ 0 and bp0q “ 0. It follows that the zero-coupon yields, ypτqpxq, are affine in x

ypτqpxq :“ ´
log ppτq

τ
“ rapτq `rbpτq ¨ x where rapτq :“ ´

apτq

τ
and rbpτq :“ ´

bpτq

τ
.

Notice that the parameters of the above system stem from the worst-case model, so they are altered
by η0 and η1 relative to the baseline values. As a result, one can infer psξ0, sξ1, sξ2, sξ3q from observable
zero-coupon yields, provided that the baseline parameters and the realized path of Xt are ‘known’. In
Section 3.2, I propose a two-step procedure along these lines to estimate the model parameters.

In spirit, this exercise is similar to the method often applied in the arbitrage-free affine term structure
literature to estimate market prices of risk and the so called risk-neutral probabilities.17 Nevertheless,
there is a key difference: in my case, subjective beliefs are derived endogenously as part of the minimizing
player’s decision rule, so the theory imposes tight restrictions on how η0 and η1 hinge on the agent’s
environment pκ, σ, β0, αq and preferences ξ, inducing a reduction of the number of parameters to estimate.
In contrast, while the affine term structure literature exploits the cross-equation restriction implied by
no-arbitrage by using a system of ODEs for the yield coefficients similar to (12), it typically leaves the
change of measure, that is the form of η0 and η1, unrestricted.

17For a nice summary about the objectives and main techniques used in the affine term structure literature, see Piazzesi
(2010). An accessible textbook treatment can be found in Chapter 14 of Ljungqvist and Sargent (2012).
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3 Estimation

3.1 Baseline model

Because of the multivariate Ornstein-Uhlenbeck structure of the baseline model (1), the associated
discrete time sampling leads to a time invariant linear state space model with coefficient matrices being
explicit functions of the continuous time parameters:18,19

«

∆ct`1

πt`1

ff

“ βD0 `Xt ` α
Dεt`1

Xt`1 “ κDXt ` σ
Dεt`1

(13)

where εt`1
iid
„ N p0, I2q, while ∆c and π denote log consumption growth and inflation respectively. From

the agent’s perspective, X is assumed to be observable, so there is no need for filtering on her part. In
contrast, from an outside observer’s point of view, the state vector is latent. I estimate the parameters of
this system and the path of the latent state vector X with maximum likelihood using data on quarterly
consumption growth and inflation. Given the parametrization, the states can be viewed as (centered)
conditional expectations

Xt “ rX∆c,t, Xπ,ts
1 “ Er∆ log Yt`1 | Fts ´ Er∆ log Y s and βD0 “ Er∆ log Y s

where Ft is the information set available to the decision maker at date t containing current and past
values of consumption growth and inflation.

Data: The sample consists of quarterly observations over the period 1952:Q2 - 2019:Q4. Real consump-
tion growth and inflation rate are constructed from the National Income and Product Accounts (NIPA)
chain-type quantity and price indexes for personal consumption expenditures on non-durable goods and
services using the official NIPA methodology.20 To calculate per capita series, I use quarterly data for
population reported in Line 40 from NIPA Table 2.1.

κD σD βD0 αD

0.718 -0.017 0.138 -0.031 0.473 0.414 0.000
(0.085) (0.032) (0.025) (0.025) (0.054) (0.018) -
0.176 0.958 -0.009 0.168 0.693 -0.080 0.353
(0.078) (0.028) (0.024) (0.026) (0.192) (0.022) (0.015)

Table 1: Maximum Likelihood estimates and asymptotic standard errors (in parentheses) for the baseline model
(13). The likelihood is initialized at the stationary distribution of X. αD is normalized to be lower triangular.

18See the Online Appendix for how the vector
`

κD, σD, βD0 , α
D
˘

relates to the continuous time parameters pκ, σ, β0, αq.
19Given that the number of shocks equals to the number of observables, this form might look like a (time invariant)

innovations representation derived from some other state space model built up from ‘more primitive’ shocks (observed by
the agent). Importantly, I assume no such underlying structure.

20The used series are from Line 2, 5, 6 of Table 1.1.3, 1.1.4 and 1.1.5. For real growth rates and the associated price
changes NIPA uses the so called Fisher formula. See, for example, BEA (2016).
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Estimating the baseline linear state space model (13) with maximum likelihood gives rise to the point
estimates and asymptotic standard errors in Table 1. Note that the exposure matrix α is assumed to be
lower-triangular, which is essentially a normalization given that the worst-case model does not depend
on the particular decomposition of the covariance matrix αα1. Using the Kalman filter, I derive the state
paths associated with the point estimates; these are represented by the thick solid lines of the bottom
panel of Figure 2. As we saw in Section 2.5, if the model is correctly specified, the zero-coupon yields of
the top panel should be well approximated by affine functions of these filtered state variables.
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Figure 1: Autocorrelation functions computed from raw data (green solid lines) and from the baseline model (black
solid lines). Shaded area represents 2ˆGMM standard error bounds computed with the Newey-West estimator
including 4 quarter lags.

In order to get a better sense of the estimated dynamics, Figure 1 reports autocorrelation functions
computed from the data and from the baseline model. The estimated state space model provides a
relatively good approximation of the data, which fulfills the main requirement of Assumption 1. In fact,
the White information matrix test cannot reject the null that the model is correctly specified. This
property of the linear Gaussian model, just as well as the shape of the auto- and cross-correlations
between consumption growth and inflation more or less replicate the results of Piazzesi and Schneider
(2007). One key difference is that the presence of their main driving force, the role of inflation as bad
news about future consumption growth, is not as strong in my sample as in the one that they use. In
particular, based on the upper right panel of Figure 1, the relationship between lagged inflation and
consumption growth is statistically insignificant, contrary to Piazzesi and Schneider (2007), where a
similar figure shows a significant negative contemporaneous and lagged correlation. Note, however, that
the standard errors are relatively large in all three cases where inflation is involved, signaling the fact that
it is hard to estimate the inflation dynamics and especially the cross-correlations between consumption
growth and inflation accurately. This gives ample cause for the decision maker to be concerned about
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the nature of the relationship between the two variables. Based on this observation, in Section 3.5 I
reinterpret the ‘bad news’ channel of Piazzesi and Schneider (2007) in terms of model uncertainty.

3.2 Estimation of the worst-case model

An appealing feature of robust control theory is that it lets us deviate from rational expectations, but
still preserves a set of powerful cross-equation restrictions on the decision maker’s beliefs, like that of (8),
provided that the ex post Bayesian interpretation is applicable. Consequently, estimation can proceed
essentially as with rational expectations econometrics (Hansen and Sargent, 1980). The main difference
is that now restrictions through which we interpret the data emanate from the decision maker’s best
response to the worst-case model instead of the econometrician’s model.

Building on this idea, I proceed to estimate parameters of the twisting function ξ with two-stage max-
imum likelihood using data on real consumption growth, inflation and interest rates. For simplicity,
define the composite parameter vectors ψ1 :“ pκ, σ, β0, αq, ψ2 :“ psξ0, sξ1, sξ2, sξ3q and ψ :“ pψ1, ψ2q. In
case of the baseline ψ1, one can also define the discrete time analog, ψD1 . Recall that this vector is a
one-to-one function of ψ1, so having a point estimate for pψD1 implies an estimate for pψ1.

Two-step estimator for the vector ψ

1. Estimate ψD1 of the state space model (13) with maximum likelihood. This produces pψD1 and an

estimated path for the states
!

pXt

)T

t“0
obtained by the (time invariant) Kalman filter.

2. Derive and fix the continuous time baseline parameters pψ1 along with
!

pXt

)T

t“0
and construct

model implied measurement error ridden zero-coupon yields as functions of ψ2

ypτqpψ2; pψ1, pXtq “ apτqpψ2; pψ1q ` b
pτqpψ2; pψ1q ¨ pXt ` σmεt (14)

where εt`1
iid
„ N p0, I5q, whereas apτq and bpτq denote the solution of the system of ODEs parametrized

by pψ2; pψ1q. Estimate ψ2 along with σm by maximizing the conditional likelihood—subject to the
constraint that ψ2 induces a positive semidefinite Ξ matrix defined in (5)—for nominal yields with
1-, 5-, and 15-years of maturity and for real yields with 5- and 15-years of maturity.

Data: Data on nominal zero-coupon yields with maturities one to 15 years are from combining the
zero-coupon estimates of McCulloch and Kwon (1993) covering the period 1952:Q2 - 1971:Q4 with the
Gurkaynak, Sack, and Wright (2007) data, which is available since 1971:Q4. I also use real zero-coupon
yields using the estimated TIPS yield curve in Gurkaynak, Sack, and Wright (2010) starting from 1999.21

21Both Gurkaynak, Sack, and Wright (2007, 2010) data sets are continually updated. The latest versions can be
conveniently downloaded through the Quandl Financial and Economic Database using the keys FED/SVENY and FED/TIPSY.
These are daily series that I turn into quarterly data by taking the last observation in each quarter.
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A natural question to ask: why two steps? Given the quasi-analytic form of zero-coupon yields, one
could estimate the parameters of ξ along with the baseline model in one step by maximum likelihood,
thus obtaining a more efficient estimator.22 I sacrifice efficiency in order to address concerns raised
by Hansen (2007) and Chen, Dou, and Kogan (2017) about ‘overusing’ cross-equation restrictions by
including asset price series as a way to improve inference about (demonstrably hard to estimate) models
that assign a special role to beliefs.23 In addition, estimating the vector X without using price data
allows me to interpret them as macro risk factors and investigate how these factors accompanied with a
SDF can predict prices.
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Figure 2: The top panel displays nominal and real zeros-coupon yields with different maturities. Superscripts
show maturities in years. The dashed vertical lines identify dates from which additional data are available.
The bottom panel shows time-series of real consumption growth and inflation (thin lines) and the corresponding
estimated latent factors (thick lines) shifted by the unconditional means. NBER recessions are shaded.

The top panel of Figure 2 displays a set of nominal and real zero-coupon yields. Over most of the sample
period, the nominal yield curve is upward-sloping: yields of bonds with longer maturities tend to be

22Appendix C presents results for such a one-step estimation procedure. The key qualitative findings of the paper
remain unchanged, but as I explain it here there are good reasons to prefer results from the two-step procedure.

23These papers describe examples in which inferences about the behavior of quantities, say consumption, become more
precise once one includes asset prices and utilizes the associated extensive set of cross-equation restrictions, relative to when
inferences are made from the quantity data alone. The question then arises “about how the investors who are supposedly
putting those cross-equation restrictions into returns came to know those quantity processes before they observed returns.”
Hansen and Sargent (2020a).
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higher than those of bonds with shorter maturities. Another salient feature of the data is the recurring
narrowing (and subsequent widening) of yield spreads, i.e., the difference between long-term and short-
term interest rates, prior to U.S. recessions. This is a well-documented fact usually summarized as the
slope of the yield curve being a reliable predictor of future economic activity (Hamilton and Kim, 2002).
These are features of the data that the model is expected to replicate.

3.3 Twisting function

Table 2 reports the point estimates for the parameters of ξ resulting from the two-stage MLE described
above. Interestingly, the constant term ξ0 turns out to be practically zero and the constraint ξ0 “ 0

does not change the estimates significantly. This indicates a critical role for the twisting function’s state
dependence. As we have seen in Section 2, it is exactly this state dependence, emerging from ξ2 ‰ 0, in
which the twisted set Zpξq deviates from the standard framework of Hansen and Sargent (2001).

sξ0
sξ1

sξ2
sξ3

Unrestricted case « 0.00 0.16 -0.15 0.08
(0.03) (0.53) (0.04) (0.01)

Only state dependence 0.0 0.16 -0.15 0.09
- (0.21) (0.03) (0.01)

Table 2: Second stage QMLE estimates and asymptotic standard errors (in parentheses) for the parameters of ξ.
The standard errors were computed using the formula by Murphy and Topel (2002). The rows labeled as "only
state dependence" report estimates for the case when sξ0 “ 0 is imposed. One should take the standard error of
sξ0 cautiously given that the estimate is close to the boundary.

If I impose no state dependence with the constraint ξ2 “ 0, the estimated ξ0 becomes exactly zero (at
the boundary of the constraint). This suggests that logarithmic utility with rational expectations, ξ “ 0,
does a better job of explaining zero-coupon yields than the Hansen and Sargent (2001) model, at least
when one uses the proposed two-step procedure. This finding is remarkable, especially in lights of the
Hansen and Sargent (2001) model’s close connections with recursive utility (Skiadas, 2003).

3.3.1 Recursive utility with unit elasticity of intertemporal substitution

For the sake of comparison, consider an investor with preferences represented by a utility function of the
type proposed by Kreps and Porteus (1978), Epstein and Zin (1989) and Duffie and Epstein (1992) with
unitary elasticity of intertemporal substitution and risk aversion parameter γ. Suppose that the investor’s
belief is given by the baseline model of Section 3.1 evaluated at the point estimates. The behavior of
this investor is observationally equivalent with a robust decision maker of Hansen and Sargent (2001),
i.e., an agent with a scalar twisting function. In particular, one can establish the following relationship
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between the risk aversion parameter γ and the constant term of ξ:

pγ ´ 1q “
1

`˚psξ0q
“

g

f

f

e

sξ0δ2

ˇ

ˇ

ˇ
α1e1 ` σ1 pδI2 ` κ1q

´1 e1

ˇ

ˇ

ˇ

2

under which the recursive utility investor with unitary elasticity of substitution becomes observationally
equivalent with my robust decision maker if ξpxq “ sξ0 ě 0. This relationship allows us to reinterpret
the effect of recursive utility as a pessimistic adjustment to the means of log Y and X through φ and β0.
On top of this, activating state dependence in ξ induces further adjustments in the persistence of the
baseline dynamics.24 Indeed, the finding that the estimated sξ0 is zero suggests that it is the persistence
of the baseline that needs to be altered in order to explain the observed zero-coupon yields.

This result might be surprising in light of Piazzesi and Schneider (2007), who study a representative
investor with recursive utility with unitary elasticity of intertemporal substitution. Using similar con-
sumption and inflation data as I do, with a sample ending in 2005, they choose γ (and δ) so that the
model implied average yield curve matches both the 1-year and the 5-year average zero-coupon yields.
Extending the sample with the last fifteen years, however, changes the estimated dynamics of the base-
line model: most importantly, inflation becomes much less persistent. As a result, for the extended
sample there is no γ ą 1, which would make the average nominal yield curve upward sloping and the
best fit is reached by logarithmic expected utility. In other words, recursive utility and the argument of
Piazzesi and Schneider (2007) alone are insufficient for an upward sloping nominal yield curve.

3.4 Nominal yield curve

Figure 3 compares the observed yield curve dynamics with those implied by the model with quadratic
ξ. Although the resulting fit is far from perfect, the robust control model with the state dependent
twisting function can capture important features of the data. In particular, both high short rates and
low yield spreads seem to predict low consumption growth, and they move in opposite directions during
recessions – short rates fall while yield spreads run up (see Figure 2). The model can also replicate the
changing sign of the slope of the yield curve in the late 1970s and early 1980s. On the other hand, the
average level of yields in the periods of the 1980s and post-2007 look puzzling from the model’s point of
view. Also, the sensitivity of the yield spreads to the states, determined by the endogenous vector bpτq,
seems to be somewhat low relative to the data.

As for unconditional moments, Figure 4 shows the stationary distribution of the model implied yield curve
along with sample analogues of the nominal yield curve’s mean and standard deviation. The left panel
represents the distribution that arises from the estimated quadratic ξ, while, as a comparison, the right
panel shows what recursive utility with unitary elasticity of substitution would result in. Interestingly,
contrary to the recursive utility, the fitted robust control model induces an upward sloping mean nominal
yield curve following closely the sample averages, and it also generates a substantial amount of volatility

24Importantly, ξ2 affects every term in the value function (see Appendix A), so both the level and the persistence
parameters change. Indeed, even if ξ0 “ 0, ξ2 alone can influence all parameters φ, κ, β0 and β1 (see Table 3)
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Figure 3: Comparison of the estimated yields and yield spreads with their observed counterparts. Top panel
shows zeros-coupon yields with different maturities (superscripts denote maturities in years). The bottom panels
display a medium- (left) and a long-term yield spread (right) and the correlation coefficients between the model
implied and realized series. NBER recessions are shaded.

for both short and long maturities. Although the model implied volatilities still fall short of the standard
deviations computed from the sample, this is clearly an improvement relative to the recursive utility
model that heavily suffers from the so called excess volatility puzzle (Shiller, 1979).25

The reason for the relatively large volatility of long yields is the presence of state dependent uncertainty
prices. Because a risk premium is the product of ρpxq and the asset’s shock exposure, this property
effectively breaks the expectation hypothesis that requires constant risk premium (Cochrane, 2005). It
is the extra fluctuation in risk premia that helps to reconcile the relative volatility of long and short
yields. Notice that this fluctuation arises from the agent’s misspecification concerns as opposed to other
forces commonly employed in the literature to obtain variable (and counter-cyclical) risk premia.26

25The puzzle can be summarized as follows: long-term interest rates derived from the expectations hypothesis are not
volatile enough to be aligned with the data. Models that exhibit constant risk premium satisfy the expectations hypothesis,
so they are exposed to this type of puzzle. The recursive utility model with homoskedastic consumption is one example.
Cochrane (2005) argues compellingly that excess volatility is exactly the same phenomenon as return predictability.

26Notable among these are the long-run risk model with stochastic volatility by Bansal and Yaron (2004), which assumes
recursive utility and introduces a new shock, and the external habit model of Campbell and Cochrane (1999), which hinges
on a particular history-dependent utility function that implies time varying local risk aversion.
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Figure 4: Model implied stationary distributions of the nominal (blue) and real (red) yield curves and the
corresponding sample moments. Shaded areas represent one standard deviation bands around the means (solid
lines). Grey solid lines show the sample average, the dashed lines are one standard deviation bands using the
sample standard deviations. The left panel is for the benchmark model with quadratic ξ. The right panel shows
the case with ξ2 “ 0. The boxes contain associated half-lives.

Regarding real interest rates, the model produces a downward sloping average yield curve. In fact, real
yields with long maturities are predicted to be lower than in the case without robustness.27 The un-
conditional variance of yields appears to decay sharply with maturities, suggesting a relatively modest
state dependence in the uncertainty price of the shocks to consumption growth. In other words, mis-
specification concerns regarding the persistence of consumption growth process alone do not seem to be
significant (see also Figure 5).

Notwithstanding its shortcomings, the model does a decent job in explaining the unconditional moments
of the nominal yield curve as well as the dynamics of its slope. This is remarkable given that—because
of the two-step estimation procedure—it can be regarded as a parsimonious two factor model of the
yield curve with the factors being estimated from macro aggregates without any reference to prices.

3.5 Subjective beliefs

Table 2 shows that the key role of ξ in shaping the household’s stochastic discount factor is to make the
set Z sensitive to X, the deviation of expected inflation and consumption growth from their long run
means. Recall that the larger is the value of ξpXtq, the more relaxed the minimizing agent’s constraint,
implying a more concerned decision maker. For example, the household appears to be more worried in
times when the baseline inflation expectation deviates more from its long term mean in either direction,
that is, when the green thick line of the bottom panel of Figure 2 lies far above (in the 1970s) or far
below (early 1960s and post 2007) the dashed horizontal line.

27This follows from the downward (pessimistic) adjustment in the expected consumption growth rate, β∆c
0 , caused by

the worst-case model (see Table 3). This suggests that as long as the baseline dynamics – in this case log utility with
rational expectations – does not induce an upward sloping real yield curve, robust preferences cannot ’fix’ this. As a similar
adjustment appears in models with recursive utility, the same implication applies as the findings of Piazzesi and Schneider
(2007) nicely illustrate.
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Baseline parameters
φD κD βD0 βD1
0.00 0.72 -0.02 0.47 1.00 0.00
0.00 0.18 0.96 0.69 0.00 1.00

Worst-case parameters
rφD rκD rβD0

rβD1
-0.02 0.73 -0.02 0.42 1.03 0.02
0.03 0.19 1.00 0.77 0.03 1.09

Table 3: Parameter values of the state-space model under the baseline and the worst-case distribution

As I discussed in Section 2.3, the inferred worst-case model is interpretable as the robust investor’s
subjective belief. Because of the chosen functional forms, this belief can be represented with a model
from the same parametric family as the baseline. The resulting worst-case parameters are reported in
Table 3. Clearly, the constant terms rφ and rβ0 change pessimistically relative to the baseline. This kind
of pessimistic adjustment of unconditional expectations is typical in standard robust control models
with scalar twisting functions or in recursive utility models with unitary elasticity of substitution and
it remains present with the state dependent ξ as well. On the other hand, a novel feature is that the
worst-case model also alters the correlation structure of the baseline: the state variables, especially the
conditional inflation expectation, become more persistent and more strongly correlated with each other.

Displaying autocorrelation functions that emerge from the worst-case model (red lines), Figure 5 illus-
trates how the robust investor perceives the dynamics of fundamentals, i.e., the belief that supports the
observed yield curve dynamics. Evidently, inflation is much more persistent and the negative correlation
between inflation and consumption growth is more pronounced than what the baseline model suggests.
The household’s subjective belief overweights the long-run risk component of inflation and, indirectly,
of consumption. Figure 6—plotting impulse responses, i.e., changes in conditional forecasts following a
one percent shock εt`1—paints a similar picture. Because α is lower-triangular, the two entries of εt`1

can be viewed as unanticipated changes in consumption growth and inflation, respectively. Evidently,
worst-case beliefs predict a much more pronounced and more persistent increase in inflation after a con-
sumption growth surprise than the ‘objective’ forecasting model (bottom left panel). Similarly, while a
one-percent inflation surprise lowers growth forecasts under both models, the effect is rather short-lived
under the baseline model. In contrast, under the worst-case beliefs, this effect is permanently negative
suggesting that inflation is a much worse news under the worst-case model than under the baseline.

These findings offer a reinterpretation of the key driving force in Piazzesi and Schneider (2007). They use
recursive utility to make the representative agent averse to persistence and endow her with (rational)
expectations derived from a state space model similar to that of Table 1, except that they estimate
significant negative comovement between lagged inflation and consumption growth. Recursive utility
along with the investor’s beliefs that inflation carries bad news about future consumption growth (long-
run risk) induces a premium for assets like nominal bonds that pay off little when inflation is high.
Because inflation is persistent, it affects long bonds worse than short bonds, giving rise to a term
premium. One weakness of this argument, however, is its dependence on a particular correlation that is
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Figure 5: Autocorrelation functions computed from the estimated baseline (black lines) and worst-case model
(red lines).

a relatively fragile feature of the data. The robust control model with a state-dependent twisting function
offers a possible remedy: while it is hard to measure the forecasting ability of inflation accurately, the
implied welfare consequences are significant, so this is exactly the kind of misspecification that a robust
agent would be worried about. Indeed, as we have seen above, the estimated subjective belief credits
inflation with strong forecasting ability about future consumption growth and very high persistence,
indicating that the market perceives the economy to be more prone to long-run risk than what the
observed data as captured by the baseline model would imply.

With the subjective belief at hand it is possible to study whether the robust control model can replicate
the empirical findings of Piazzesi, Salomao, and Schneider (2015) about the expectations of professional
forecasters. As mentioned before, contrasting survey based yield forecasts with predictions of a simple
statistical model, they find that survey expectations are formed as if both the level and slope of the yield
curve were more persistent than they appear in hindsight. Figure 7 displays the autocorrelations of yp1qt
(level) and yp5qt ´y

p1q
t (slope) computed from the baseline that approximates the physical measure and the

model implied subjective belief, as well as the corresponding sample statistics. Apparently, the agent in
the model perceives the yield curve dynamics overly persistent, which is qualitatively consistent with the
pattern found by Piazzesi, Salomao, and Schneider (2015). Since zero-coupon yields are affine functions
of the states, the discrepancies between the model implied objective and subjective autocorrelations are
implications of the different state dynamics depicted by the two measures. It is interesting, however,
that the subjective autocorrelation functions exceed even the sample analogues.
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Figure 6: Impulse responses to one-percentage point surprises in consumption growth (left column) and inflation
(right column) under the baseline model (black lines) and under the estimated worst-case model (red lines). The
first row show the effect on conditional consumption growth forecast, X∆c,t, the second row is for conditional
inflation forecasts, Xπ,t. The responses are measured in percent. Shaded areas are 2ˆ standard error bounds
based on the maximum likelihood estimates.

3.6 Size of the ball

These pessimistic beliefs are inferred from bond prices seen through the lens of the robust control model
of Hansen et al. (2020). It is not clear, however, how ‘reasonable’ these beliefs are. In Section 2, I called
those models reasonable that the decision maker cannot differentiate easily from the baseline when she
can only use a finite sample. How easy is it to distinguish the estimated worst-case model from the
baseline? To address this question, I use two measures of statistical distance between two models: (1)
detection error probability and (2) Chernoff entropy. Detection error probability for a given sample size
T is defined as the average28 probability of choosing the ‘wrong’ model associated with a likelihood ratio
test between the worst-case and the baseline. In my case, the error probability between the baseline
and worst-case model is « 7%, which is slightly bigger than the error probability required by Barillas,
Hansen, and Sargent (2009) to achieve the Hansen-Jagannathan bound in their model.

Chernoff entropy, χ, is proposed by Anderson, Hansen, and Sargent (2003) and Hansen and Sargent
(2020a) as a tool to calibrate the plausible amount of robustness. It is defined as the upper bound
for the asymptotic decay rate of detection error probability as T goes to infinity. High values of χ
suggest a fast decay rate indicating that the two models are relatively easy to differentiate from each

28By average I mean that the conditional error probabilities, say probability of mistakenly choosing model B while
model A generates the data, are weighted by prior probabilities associated with the two models. Anderson, Hansen, and
Sargent (2003) assign .5 to each model, whereas Hansen and Sargent (2020a) put probability one on the baseline.
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Figure 7: Autocorrelation functions of zero-coupon yield with 1 year maturity (left) and the yield spread between
the 5- and 1-year maturity zero coupon bonds (right) computed from raw data (green solid lines), from the
estimated baseline model (black solid lines) and from the worst-case model (red solid lines). Shaded area represents
2ˆGMM standard error bounds computed with the Newey-West estimator including 4 quarter lags.

other. To facilitate the interpretation of χ, Hansen and Sargent (2020a) introduce the notion of half-life.
This is based on the hypothetical scenario in which the decay rate of mistake probability is constant
sχ over time. If this were the case, the half-life, i.e., the increase in sample size necessary to halve the
mistake probability, would be ∆T “ log 2{sχ. In my case, the estimated ξ gives rise to a half-life of 70

quarters, which means that the worst-case model is so close (statistically) to the baseline that if the
decision maker kept running likelihood ratio tests each period between the two models, it would take
more than 15 years for her to halve the mistake probability. This seems reasonable, especially given
that the constant sχ is more of an upper bound than an accurate measure of the (finite sample) decay
rate. Furthermore, discriminating among a set of different models, the actual task faced by the robust
decision maker, is significantly more complicated than the pair-wise comparison suggested by the above
thought experiment.

4 Survey expectations

Assumption 2 suggests a reinterpretation of the worst-case model as the robust decision maker’s sub-
jective belief. Interestingly, this feature of robust control theory allows us to test its predictions with
an independent data source. Notice that if the equilibrium drift-distortion H˚ is nonzero, this theory
predicts that the decision maker’s subjective belief is ‘wrong’, in the sense that it systematically differs
from the econometrician’s model. As the discrepancy follows a specific pattern, this prediction is testable
provided that one has a good proxy for beliefs.

A possible approach is to study surveys of professional forecasters about their expectations of future
aggregate variables. In the analysis that follows, I use the Blue Chip Financial Forecasts survey, which
I take to represent ‘prevailing opinion’ about the future level of U.S. interest rates. In each month,
this survey asks approximately 40-50 professional forecasters about their h-quarter-ahead forecasts of
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variable R, so one can consider their median answer as a rough approximation to the market’s period-t
subjective expectation about Rt`h. In order to be able to use such survey forecasts to test the predictions
of robust control theory, I need the following assumption:

Assumption 3. Professional forecasters understand the survey question as an inquiry about the expec-
tation that justifies their behavior, asking for forecasts that they would act upon.

Assumption 3 claims that survey expectations are not answers to the question: ‘what is your best guess
of the realization of Rt`h?’. When they need to give a forecast that ‘they would act upon’, survey
participants are not interested in minimizing the mean squared forecast error (as the econometrician’s
model might do). They acknowledge that whatever statistical model they come up with, it will be
imperfect, so they rather ‘adjust’ its implied forecast to find an investment strategy that is robust to
such model imperfections. In a way, a worst-case model implied forecast captures such ‘pessimistic
adjustments’—arising from misspecification concerns—to a purely statistical forecast implied by the
baseline model. Policymakers are often thought to exhibit similar kind of behavior. For instance, Ellison
and Sargent (2012) present evidence that the pattern of differences between FOMC forecasts and forecasts
published by the staff of the Federal Reserve System in the Greenbook can be explained as a result of
pessimistic adjustments emerging from the FOMC’s concern about the staff’s model. The importance of
Assumption 3 stems from the fact that it ensures that the answers of professional forecasters represent
the same object that the model of this paper is about: a robust decision maker’s worst-case belief.29

To assess the accuracy of survey forecasts, a popular approach in the literature is to contrast time series
of survey expectations with (objective) conditional expectations coming from statistical models that
one fits to the realized R series. As a prominent example, Piazzesi, Salomao, and Schneider (2015)
utilize survey data of interest rate expectations and study their joint dynamics with realized interest
rates. Following the tradition of the affine term structure literature, they impose little structure on how
two probability measures differ other than forcing the stochastic discount factor to belong to the same
affine parametric family under both measures. Thanks to the particular functional form assumptions
in Section 2, this paper presents a very similar setting, where the models of interest exhibit an affine
structure. Nevertheless, in contrast to the affine term structure literature, the change of measure H˚ is
itself an equilibrium object, restricted by cross-equation relationships among the model parameters. As
we saw in Section 2.4, the central feature of these restrictions is that the worst-case measure overweights
adverse states where the degree of adversity is determined by the derivative of the value function.

Like Piazzesi, Salomao, and Schneider (2015), I use survey expectations of interest rates, which have
the advantage that prices of traded assets already contain valuable information about H˚ through the

29It might be tempting to extend this logic to higher moments as well and use the cross-sectional distribution of survey
answers as a proxy for the market’s view about the conditional distribution of future R. Cross-sectional dispersion of
survey answers, for example, tends to be substantial, which one might interpret as the ‘degree of confidence’ (Ilut and
Schneider, 2014) or the ‘size of the worst-case drift distortion’ (Ulrich, 2013). Nevertheless, the robust control model of
this paper offers no direct link to cross-sectional dispersion in survey forecasts. In general, the variance of the conditional
expectation of R does not equal to the conditional variance of R. Instead, I consider a representative agent economy
that does not feature heterogeneity in baseline models or attitudes toward robustness. The representative agent serves as
a stand-in for the market and it allows me to focus the analysis on the effect of pessimistic belief distortions, which is
separate from the notion of belief heterogeneity.
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market’s stochastic discount factor. The central idea of my testing strategy is that I can make inferences
about the same object, the equilibrium drift distortion H˚, from two independent sources. If the model
is correct, the two sources should lead to similar outcomes, a testable prediction.

4.1 Interest rate expectations

The task of forecasting subsumes a ‘new role’ of subjective belief besides determining the coefficients
apτq and bpτq for the conditional expectation of the stochastic discount factor: it encodes the agent’s
view about future values of the state vector. If H˚ ‰ 0, these views are systematically, pessimistically
biased relative to the baseline state dynamics. Being affine functions of the state vector, model implied
yield forecasts are propelled by these altered state dynamics, so by utilizing surveys, I can effectively
test whether the subjective belief elicited from prices is consistent with the state dynamics encoded in
survey expectations.

To investigate the validity of this statement, I compare model predictions, evaluated at the estimated
pψ, about subjective belief with the survey data along some informative conditional and unconditional
moments. The idea is that if the model is correctly specified, the twisting function should give rise
to a worst-case that can simultaneously explain the realized yields and the observed biases of survey
expectations. By comparing moments, I hope to identify dimensions along which the model performs
well and ones along which it fails. That said, let E‹t y

pτq
h denote the median of survey yield forecasts

in period t, where h identifies the forecast horizon (in quarters) and τ stands for the maturity of the
bond (in years). Similarly, let E‹t spmh and E‹t splh denote the h-quarter ahead median survey forecasts of
medium- (5 year minus 1 year maturity) and long-term (10 year minus 1 year maturity) yield spreads,
respectively. Consider the following variables:30

(a) conditional level: h-period ahead expectation of zero-coupon yield with maturity τ :

ry
pτq
h pXtq :“ rE

”

ypτqpXt`hq|Xt

ı

“ apτqpψq ` bpτqpψq ¨ rE rXt`h|Xts

This is the direct model counterpart of survey expectations E‹t y
pτq
h .

(b) conditional yield change: expected h-period change of yield with maturity τ :31

∆ry
pτq
h pXtq :“ rE

”

ypτqpXt`h`1q ´ y
pτqpXt`1q|Xt

ı

“ bpτqpψq ¨ rE rXt`h`1 ´Xt`1|Xts

The sample counterpart is constructed by ∆E‹t y
pτq
h :“ E‹t y

pτq
h`1 ´ E

‹
t y
pτq
1 .

30By conditional I mean conditioning on the agent’s information set, which is Xt in the model.
31I shift the starting date one period ahead in order to get a variable that hinges only on the survey data. The aim

is to eliminate the risk of comparing the model with a variable that was in part used in the estimation step. Replacing
E‹t y

pτq
1 with ypτqt does not affect any of my results significantly.
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(c) conditional change in spread: expected h-period change in yield spreads

∆ rspihpXtq :“ rE
“

spipXt`h`1q ´ sp
ipXt`1q|Xt

‰

“ ∆ibpψq ¨ rE rXt`h`1 ´Xt`1|Xts i “ m, l

The sample counterpart is constructed by ∆E‹t sp
i
h :“ E‹t sp

i
h`1 ´ E

‹
t sp

i
1 for i “ m, l.

(d) subjective forecast error and bias: difference between the conditional expectation under the
subjective measure and the actual realization

error
pτq
t,h “

rE
”

ypτqpXt`hq|Xt

ı

´ ypτqpXt`hq “

“ rE
”

ypτqpXt`hq|Xt

ı

´ E
”

ypτqpXt`hq|Xt

ı

looooooooooooooooooooooooomooooooooooooooooooooooooon

“bias
pτq
t,h

`E
”

ypτqpXt`hq|Xt

ı

´ ypτqpXt`hq
loooooooooooooooooooomoooooooooooooooooooon

“objective forecast error
pτq
t,h

“

“ bpτqpψq ¨
´

rE rXt`h|Xts ´ E rXt`h|Xts ` E rXt`h|Xts ´Xt`h

¯

The natural sample analogue is E‹t y
pτq
h ´ y

pτq
t`h. This is a crude measure of the experts’ forecast

accuracy that is expected to be zero on average if the used forecasting model is ‘correct’. However,
a more informative measure would compare the subjective expectations with statistical forecasts.
To that end, I decompose subjective forecast error into a bias and an objective forecast error
terms, the former being defined as the difference between the subjective and objective conditional
expectations of a particular zero-coupon yield.32 In the model, the bias can be readily computed
by using yield forecasts from the worst-case and baseline models. In order to get a sense of the
size of bias in the sample, I construct a measure for ‘objective’ conditional forecast, pEty

pτq
h , based

on a simple unrestricted VAR meant to approximate the interest rate dynamics well.33

Within the model, using the stationary distribution of the states under the baseline, one can compute
the unconditional moments of these variables, which are directly comparable with the sample averages
and standard deviations of the data analogues. In case of the subjective forecast error this implies

E
”

error
pτq
t,h

ı

“ E
”

bias
pτq
t,h

ı

` E
”

objective forecast error
pτq
t,h

ı

“ E
”

bias
pτq
t,h

ı

that is, according to the model, the unconditional mean of the subjective forecast error is equal to the
unconditional mean bias. Of course, if we used the ‘true’ data generating process to compute objective
forecasts pEty

pτq
h , a similar law of iterated expectations type argument would hold in the sample as well.

Using a VAR approximation, however, I am less ambitious and will report sample averages for the
objective forecast error.

32Piazzesi, Salomao, and Schneider (2015) use the bias term to construct a measure of subjective risk premia from
common statistical measures of risk premia.

33For macro aggregates, Bhandari, Borovička, and Ho (2019) use the difference in survey expectations between the
Michigan Survey of household expectations and the Survey of Professional Forecasters as a proxy for bias

pτq
t,h , the idea

being that the professionals use the ‘true’ model. As for interest rates, due to lack of data, a similar proxy is infeasible.
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4.2 Survey data

As an observable proxy for the market’s subjective expectations of future yields, I use the Blue Chip
Financial Forecasts (BCFF) survey over the period 1982:Q4 through 2017:Q2. This is a monthly survey,
where the information is typically collected over a two-day period at the end of each month. Forecasts are
averages over calendar quarters and cover horizons up to five quarters ahead. To obtain quarterly series,
I use answers gathered at the end of each quarter.34 The survey forecasts are for U.S. Treasury par yields
on coupon bonds with maturities of 1, 2, 5, 10, and 30 years, hence they are not directly comparable
to model implied zero coupon yields. The main difficulty is that, unlike zero-coupon yields, par yields
are non-linear functions of the states. In order to avoid this complication, I use the bootstrap technique
proposed by Fama and Bliss (1987) to interpolate the forecasts of par yields and obtain approximate
forecasts of zero-coupon yields.

1984 1989 1994 1999 2004 2009 2014

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Median expected yield changes

∆Et y
(1)
4

∆Et y
(5)
4

∆Et y
(10)
4

1984 1989 1994 1999 2004 2009 2014

1.0

0.5

0.0

0.5

1.0
Median expectated change in yield spreads

∆Et sp
m
4

∆Et sp
l
4

Figure 8: Summary of subjective one-year-ahead zero-coupon yield expectations constructed from the BCFF
survey. The left panel shows survey analogues of the conditional yield change variable, that is the expected one
year percentage-point change (between t` 5 and t` 1) in yields of different maturities. The right panel displays
the expected change in the medium-term and long-term spreads.

Figure 8 reports sample analogues of the conditional yield change and conditional change in spread
variables defined above for one year horizon. Looking at these graphs, one can see that survey forecasts
in period t are more than just simple copies of the period t realized yields. Expected yield and spread
changes exhibit large and systematic fluctuations. As the survey statistics in Table 6 also demonstrate,
the series exhibit substantial volatility, and on average, market participants anticipate yields to rise.
Furthermore, after all recessions included in the sample, the market prognosticated significant surge
in yields for all maturities in a manner suggesting a forthcoming flattening in the yield curve. These
features already picture the market as being somewhat pessimistic, however, in principle these pessimistic
forecasts might be actually correct.

The sample statistics for subjective forecast error contained in Table 4 for different maturities and
forecast horizons, show that this is not the case. For all combinations, the sample averages are positive

34For example, answers given at the end of December are viewed as the observation for the fourth quarter of the
respective year. The one-quarter ahead forecast is then equal to the expected average yield between January and March.
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and increasing in the forecast horizon, that is, the farther the professionals must look into the future, the
more biased (pessimistically) their average views are about interest rates. At horizons up to 2 quarters,
the estimates are close to zero, but the statistical significance improves as the forecasting horizon is
getting longer. By design, this finding is at odds with rational expectations. On the other hand, as we
have seen in the earlier sections, the robust control model with its endogenous subjective belief might
be a good candidate to explain these patterns.

Mean Standard deviation
Survey 1-q 2-q 3-q 4-q 5-q 1-q 2-q 3-q 4-q 5-q

error
p1q
t,h 0.02 0.16 0.34 0.52 0.71 0.60 0.88 1.13 1.36 1.54

(0.06) (0.11) (0.16) (0.20) (0.24) (0.08) (0.11) (0.14) (0.16) (0.16)
error

p5q
t,h 0.06 0.21 0.38 0.55 0.71 0.65 0.90 1.07 1.23 1.33

(0.06) (0.10) (0.14) (0.17) (0.19) (0.07) (0.11) (0.13) (0.15) (0.15)
error

p10q
t,h 0.05 0.19 0.34 0.50 0.64 0.60 0.83 0.99 1.12 1.20

(0.06) (0.10) (0.13) (0.16) (0.17) (0.07) (0.10) (0.12) (0.13) (0.14)

Table 4: Survey based means and standard deviations ofsubjective forecast error for different maturities and
forecast horizons. GMM standard errors computed with the Newey-West estimator with 4 quarter lags are in
parentheses.

4.3 Subjective bias

To evaluate this possibility, Figure 9 and 10 report features of the model implied subjective forecast error
and bias variables, and compare them with their sample counterparts, when the model is evaluated at
the worst-case parameters of Table 3. Evidently, subjective forecast error in the model moves closely
together with the survey based series. Notice, however, that this measure includes the objective forecast
error, which captures more of the difficulty of predicting zero-coupon yields than the systematic bias that
the experts make while forecasting future yields. Because I use information about these yield dynamics
to estimate the worst-case model, the impressive comovement between the survey- and model-based
subjective forecast errors might only come from matching its objective part well.

To control for this, I subtract a proxy for the objective forecast error from the subjective counterpart,
where the objective conditional forecasts are computed from running a simple unrestricted VAR for a
vector including yields with 1-, 2-, 3-, 4-, 5-, 7-, 10- and 15-year maturities.35 As anticipated, the resulting
measure of survey bias, depicted on the right panel of Figure 9, is much smaller than the subjective
forecast error, but it is still substantial, indicating again that models with rational expectations would
have a hard time matching the BCFF survey. In contrast, the robust control model of this paper can
produce a bias series that comoves with the survey based bias surprisingly well; at least until 2008: just
like before with the yield curve, model predictions start deviating from their sample analogues in the
post-Lehman period.

35More precisely, to get an h-quarter-ahead objective forecast, I project the vector Yt`h directly on Yt and take pα` pβYt.
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Figure 9: Comparison of the dynamics of model implied subjective forecast error (left) and bias (right) variables
with the sample analogues. To approximate the objective conditional forecast needed to compute survey bias, I
used an unrestricted VAR including a wide range of zero-coupon yields with different maturities. The vertical
dashed lines indicate the collapse of Lehman Brothers. NBER recessions are shaded.

Figure 9 shows results for a particular yield and forecast horizon for illustrative purposes, but the
observed patterns of comovement are representative for most asset-horizon combinations. In fact, as
Table 5 illustrates, the correlation coefficient of 0.15 for the 4-quarter-ahead forecasts of the 1-year
zero-coupon yield is at the lower end of the spectrum.

Correlation (model vs survey bias)
1-q 2-q 3-q 4-q 5-q

yp1q 0.07 0.16 0.16 0.15 0.15
(0.15) (0.16) (0.17) (0.17) (0.17)

yp3q 0.38 0.36 0.32 0.25 0.25
(0.10) (0.12) (0.15) (0.16) (0.16)

yp10q 0.34 0.35 0.30 0.23 0.23
(0.15) (0.13) (0.13) (0.14) (0.14)

Table 5: Correlation coefficients between the model implied path for the bias measure and its survey based
counterpart for different maturities and forecast horizons. GMM standard errors computed with the Newey-West
estimator with 4 quarter lags are in parentheses.

The unconditional moments of the bias term are depicted in Figure 10 for various maturities and forecast
horizons. Recall that in principle, the mean bias in yield forecasts should approximate the average
subjective forecast error well. Although the black lines in Figure 10 clearly fall short of the point
estimates in Table 4, they are reasonably close. More strikingly, these model implied mean biases can
quite closely match the first two moments of the survey bias estimates in Figure 10, coming from the
difference between survey expectations and VAR forecasts. Absent robustness, the predicted mean bias
is zero. In light of this, it is remarkable that the model can replicate key features of the survey data:
the mean bias is positive and increasing in the forecast horizon, whereas it is decreasing (or slightly
hump-shaped) in the maturity dimension.
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Figure 10: Comparison of the model implied unconditional moments of the bias component with the sample ana-
logues for various maturities and forecast horizons. Model implied means and standard deviations are calculated
under the stationary baseline dynamics, when the model is evaluated at the parameters of Table 3. To approx-
imate the objective conditional forecast needed to compute survey bias, I used an unrestricted VAR including a
wide range of zero-coupon yields with different maturities.

As for the average fluctuation, the model implied standard deviations of the bias variable are again
close to the point estimates. Of course, as the survey based bias statistics depend on the particular
VAR specification, one should take these results with a grain of salt. Nonetheless, it is encouraging that
both the model implied bias and subjective error variance (not shown in the table) are in line with the
data both qualitatively and quantitatively. As an illustration, in the model, the unconditional standard
deviations of the four quarter ahead subjective forecast error are 1.71, 1.46 and 1.30 for the maturities
1, 5 and 10 years respectively that are comparable with the estimates in Table 4.

4.4 Other moments

To get a more detailed picture about the performance of the elicited subjective belief, Table 6 and
Figure 11 compare model predictions with the survey data along the three conditional variables for the
horizon of one year. Regarding conditional level, the model implied moments are comparable to survey
expectations, although there are systematic differences especially for short maturities: the unconditional
means in the model are higher, while the standard deviations are somewhat lower than the sample
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statistics. The main reason behind these differences is the historically low yield expectations of the
post-2007 period that the model fails to match. Otherwise, the elicited belief performs reasonably given
that the estimator is restricted to be an affine function of two macro factors. It can replicate the
main movements and (most of) the downward trend over the sample period. Moreover, relative to the
(estimated) rational expectation model with recursive utility, depicted in the bottom two lines of Table
6, the numbers indicate clear improvement.

Level Yield change Spread change

ry
p1q
4 ry

p5q
4 ry

p10q
4 ∆ry

p1q
4 ∆ry

p5q
4 ∆ry

p10q
4 ∆ rspm4 ∆ rspl4

Survey

mean 4.51 5.54 6.06 0.41 0.36 0.30 -0.05 -0.11
(0.47) (0.45) (0.41) (0.09) (0.07) (0.06) (0.03) (0.05)

std 2.80 2.70 2.46 0.55 0.43 0.37 0.25 0.32
(0.47) (0.80) (1.11) (0.05) (0.04) (0.03) (0.03) (0.04)

Robust model mean 5.51 5.85 6.10 0.20 0.23 0.21 0.01 -0.01
std 2.33 2.11 1.89 0.22 0.12 0.10 0.10 0.12

RE model mean 5.35 5.28 5.23 0.00 0.00 0.00 0.00 0.00
std 1.51 0.91 0.56 0.61 0.51 0.45 0.12 0.18

Table 6: Model implied and survey based statistics of the 1-year-ahead conditional level, conditional yield change,
and conditional change in spread variables for different maturities. The top panel shows sample averages and
GMM standard errors (computed with the Newey-West estimator including 4 quarter lags). The middle panel
displays the stationary means and standard deviations (evaluated under the baseline) induced by the estimated
model with the quadratic ξ. The bottom panel shows moments from the model estimated with a scalar ξ, which
corresponds to recursive utility and rational expectations (RE).

A more serious challenge for the model, however, is to match the expected yield and spread changes.
Unlike the subjective forecast error, the conditional change variables hinge only on the subjective state
dynamics in the sense that fluctuations in ∆ry

pτq
n are induced by fluctuations in the expected movements

of X. Indeed, Figure 11 reveals that the estimated model (evaluated at pψ) cannot produce enough
fluctuation in ∆ry

pτq
h and ∆ rsp

pτq
h to match the surveys and their performance are getting worse at longer

maturities. Table 6 shows that the model implied unconditional standard deviations of the conditional
yield change variable for the 1, 5 and 10-year bonds are, respectively, 1{3, 1{4 and 1{4 of the sample
statistics. The prime reason for this low volatility is the same feature of the worst-case model that
helped to explain realized interest rates: a highly persistent inflation factor Xπ. Naturally, since Xπ is
close to a random walk, the expected change ∆Xπ,t is almost zero for all t, implying low variability in
the expected yield changes, which is at odds with the substantial variation of the survey analogue.

One can see this by comparing the red lines with the black ones in Figure 11, which represent hypothetical
objective conditional forecasts. They are constructed by keeping the parameters of the zero-coupon
yields fixed, while using the baseline model, instead of the worst-case, to forecast future values of X.
Apparently, these objective forecasts, stemming from a less persistent Xπ variable, are substantially
more volatile than the subjective model forecasts. Nevertheless, regarding long-term averages, the
model performs well (and better than the objective forecast): the predicted unconditional means fall
into the two standard error bands of the survey statistics. Also, there is a noticeable positive comovement
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Figure 11: Comparison of the model implied conditional yield change (top row) and conditional change in spread
variables (bottom row) with the BCFF survey. The forecast horizon is 1-year. The model is evaluated at the
values of Table 3. Red lines display ‘objective’ forecasts, which fix the parameters apτq and bpτq of the yields,
but use the baseline model to forecast future values of the states. NBER recessions are shaded.

between the model and survey based measures. The correlation coefficients are 0.34, 0.44 and 0.41 for
the maturities of 1, 5 and 10 years, respectively.

Summing up, on the one hand the belief that I elicit from macro variables and asset price data by means
of the robust control model, can reasonably well approximate the dynamics and average pattern of long-
term forecast biases encoded in the BCFF survey. Underlying this result is the constant term rφ of the
state process and the fact that the worst-case model adjusts it in ways to induce a positive long-term
bias in yield expectations. On the other hand, the large variability of the expected yield changes in the
survey suggests that the persistence of the worst-case state dynamics, inferred from realized yields, is
‘too high’ to explain the survey data.

5 Concluding Remarks

In this paper, I describe a general framework to estimate and evaluate robust control models using
three types of data sets: macro aggregates, asset prices, and survey expectations. Although I focus
on bond prices and yield expectations, in principle, the idea applies to other assets and more general
environments as well. For the former, testing jointly the implications of the model (as a consumption
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based asset pricing model) for bond and equity returns seems to be a natural next step. In addition,
similar to the analysis of this paper, one might use survey expectations on stock returns to investigate
whether the pessimism found in the BCFF survey holds for stock returns as well and whether these
survey expectations are in line with predictions of the model (as a model for subjective beliefs).

Regarding the environment, I assume exogenous consumption and inflation, by which I seriously limit
the possible effects of robustness on the macroeconomy. For instance, assuming an exogenous inflation
process might not be so innocuous given that the worst-case model depends on the various channels
through which inflation can affect the household’s welfare. In my setting, the only functions of inflation
are (1) to determine the real cash-flow of assets and (2) to forecast future consumption growth; conse-
quently, the worst-case model can reflect only these roles. If inflation were endogenous, it could have
other welfare relevant impacts that would probably alter the worst-case and thus the agent’s subjective
beliefs. A simple way to endogenize inflation would be to add an interest-rate/Taylor rule to my econ-
omy following the strategy of Gallmeyer et al. (2007). In addition to enriching the baseline model in an
interesting way, incorporating monetary policy induced changes in short-term interest rates might also
help to improve the empirical fit of the model.
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Appendix

A Solution of the planner’s problem

This appendix provides details about the derivation of the planner’s problem in Section 2.4. As in
the text, let the state vector be X P Rn and collect the multiplicative functionals of interest in the
m-vector Y P Rm` , so that its first entry is consumption C. For simplicity, define the stacked vector
S :“ r1, X 1, log Y 1s1 with 1 ` n ` m elements and let EH denote the expectation operator under the
alternative model, which can be represented by the m-dimensional drift distrotion H relative to the
baseline model. The Lagrangian of the planner’s minimization problem, with ` ě 0 being the multiplier
on the constraint ZH P Zpξq, can be written as36

V px, yq :“ max
`ě0

min
H

ż 8

0
expp´δtqEH

„

logCt `
`

2

“

Ht ¨Ht ´ S
1
tξSt

‰

| S0 “ s



dt “

“ max
`ě0

min
H

ż 8

0
expp´δtqEH

“

S1tQSt `H
1
tRHt | S0 “ s

‰

dt

subject to

dSt “

»

—

–

0 0n 0 01m´1

φ ´κ 0 01m´1

β0 β1 0 01m´1

fi

ffi

fl

Stdt`

»

—

–

01m

σ

α

fi

ffi

fl

Htdt`

»

—

–

01m

σ

α

fi

ffi

fl

dWt “: AStdt`BHtdt` ΣdWt

where H0 “ 0 and W is an m-dimensional Brownian Motion and

Q “ ´
1

2

»

—

—

—

—

–

`ξ0 `ξ11 ´1 01m´1

`ξ1 `ξ2 0n 01nˆpm´1q

´1 01n 0 01m´1

0m´1 0pm´1qˆn 0m´1 01
pm´1qˆpm´1q

fi

ffi

ffi

ffi

ffi

fl

R “
`

2
Im

where 0n denotes an n-vector of zeros, while Im is an identity matrix of size m.

Evidently, the above problem is a linear-quadratic optimal control problem. The corresponding value
function is of the form V “ S1tPSt, where P solves the (discounted) continuous time algebraic Riccati
equation (CARE)

A1P ` PA´ PBR´1B1P `Q “ δP

Guess the form V px, yq “ r1, x1sυp`qr1, x1s1 ` 1
δ log c, with υp`q being a positive semi-definite square

36Small capitals x and y denote realizations of random variables X and Y .

35



matrix of size 1` n and verify it through the HJB equation

δV px, yq “ min
h

log c`
`

2

`

|h|2 ´ ξpxq
˘

`∇V 1x pφ´ κx` σhq `
1

δ
e11 pβ0 ` β1x` αhq `

1

2
tr
“

σ1Vxxσ
‰

This guess translates into the following restricted form of P

P “

»

—

—

—

—

–

υ0p`q υ11p`q 1{p2δq 01m´1

υ1p`q υ2p`q 0n 01nˆpm´1q

1{p2δq 01n 0 01m´1

0m´1 0pm´1qˆn 0m´1 01
pm´1qˆpm´1q

fi

ffi

ffi

ffi

ffi

fl

with the feedback control

H˚t “ ´R
´1B1PSt “ ´

2

`

„

1

2δ
α1e1 ` σ

1υ1p`q ` σ
1υ2p`qXt



” η0 ` η1Xt (15)

where η0 is an mˆ 1 vector, while η1 is an mˆ n matrix.

The particular pattern of zeros in P leads to an independent CARE for υ2p`q

ˆ

p´κq ´
δ

2

˙1

υ2p`q ` υ2p`q

ˆ

p´κq ´
δ

2

˙

´
2

`
υ2p`qσσ

1υ2p`q ´
`

2
ξ2 “ 0

Notice that this equation is homogeneous in `, i.e. υ2p`q “ ῡ2`, where

ˆ

p´κq ´
δ

2

˙1

ῡ2 ` ῡ2

ˆ

p´κq ´
δ

2

˙

´ 2ῡ2σσ
1ῡ2 ´

1

2
ξ2 “ 0 (16)

Evaluate the HJB with the guess at the optimum

0 “ ´δ
“

υ0p`q ` 2υ1p`q ¨ x` x
1`ῡ2x

‰

` 2
“

x1ῡ2`` υ1p`q
1
‰

pφ´ κxq `
1

δ
e11 pβ0 ` β1xq`

´
1

2`

ˇ

ˇ

ˇ

ˇ

1

δ
α1e1 ` 2σ1 rυ1p`q ` `ῡ2xs

ˇ

ˇ

ˇ

ˇ

2

`
1

2
tr
“

σ1ῡ2σ
‰

`´
`

2

`

ξ0 ` 2ξ1 ¨ x` x
1ξ2x

˘

Collecting the linear terms yields

υ1p`q “
`

δIN ´ p´κq
1 ` 2ῡ2σσ

1
˘´1

„

`

ˆ

ῡ2φ´
ξ1

2

˙

`
1

δ

ˆ

1

2
β11 ´ v̄2σα

1

˙

e1



(17)

” `ῡ1,1 ` v̄1,0
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Matching coefficients for the constant gives

v0p`q “
1

δ

„

2φ1ῡ1,0 `
1

δ
e11rβ0 ´ 2ασ1ῡ1,1s ´ 4ῡ1,0σσ

1ῡ1,1



`

`
1

δ

ˆ

2φ1ῡ1,1 `
1

2
tr
“

σ1ῡ2σ
‰

´
ξ0

2
´ 2ῡ11,1σσ

1ῡ1,1

˙

``

´
1

δ

ˆ

e11αα
1e1

2δ2
`

2

δ
e11ασ

1ῡ1,0 ` 2ῡ11,0σσ
1ῡ1,0

˙

`´1 ” ῡ0,1`` ῡ0,0 ` ῡ0,´1`
´1 (18)

Given the form of the value function for a fixed `, we can maximize over ` ą 0 to obtain

`˚ “

d

ῡ0,´1

ῡ0,1 ` 2ῡ1,1 ¨ x` x1ῡ2x
(19)

The equations (16), (17), (18) and (19) with the guessed (and verified) form of the value function provide
the solution of the planner’s problem.

B Decentralization of the planner’s problem

In this appendix I show that the planner’s solution derived in Appendix A can be decentralized by scaled
shadow prices coming from the planner’s value function

V px, yq “ υ0p`q ` 2υ11p`qx` x
1υ2p`qx` log d

The first element of the vector Yt is the exogenous endowment/consumption Dt “ Ct. The separable log
utility and the fact that there is not way to move resources over states and time imply that the planner’s
shadow price process (without discounting and weighting by probabilities) is given by u1pDtq “

1
Dt
“ 1

Ct

with the process Dt being evaluated under the worst-case model.37 It is useful to express this process
under the baseline model and define pt ” 1

Ct
ZH

˚

t following

dpt
pt
“ ´

ˆ

e1 ¨ pβ0 ` αη0q ` e
1
1 pβ1 ` αη1qXt ´

|e11α|
2

2

˙

dt´
`

α1e1 ´ ηpXtq
˘

¨ dWt (20)

where η0 and η1 are the coefficients of the planner’s worst-case drift distortion ηpXtq ” H˚t defined in
(15). Following the strategy of Hansen and Sargent (2008), I show now that if we confront the price-
taking household with the price system (20), its worst-case model will be in line with that derived in
(15) and the robust decision rule will dictate to consume Dt.

The household faces the exogenous price process pt, which depends on the planner’s worst-case drift
distrotion (15), however, in principle she might choose a potentially different drift distortion sH. In
order to ensure that the household behaves as a price-taker, introduce a composite state vector p sX,Xq,

37By definition, shadow prices are derived from the planner’s value function evaluated at the optimum, so the process
Dt must be evaluated under the worst-case model.
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where the exogenous X follows (9), while the conformable sX denotes the minimizing player’s endogenous
state, the dynamics of which is driven by sH. Despite the possibly different dynamics, the known initial
condition implies that sX0 “ X0.

The time zero budget constaint of the household is
ż 8

0
expp´δtqE sH

“

ptp sDt ´ sCtq
‰

dt ě 0

with an associated Lagrange multiplier µ ě 0. Let ` ě 0 be the Lagrange multiplier on Zpξq and guess
the form

W psx, x, syq “ log sd`
”

1 sx1 x1
ı

»

—

–

w0 w1
sx w1x

w
sx w

sxsx w
sxx

wx w1
sxx wxx

fi

ffi

fl

»

—

–

1

sx

x

fi

ffi

fl

for the value function of the two-player zero-sum game. The associated HJB equation is

δW psx, x, syq “ max
sc

min
h̄

δ log sc`
`

2

“

|sh|2 ´ ξpsxq
‰

` µ
“

ppsd´ scq
‰

`∇W 1
psx,xq

«

φ´ κsx` σsh

φ´ κx` σsh

ff

`

` e11
`

β0 ` β1sx` αsh
˘

`
1

2
trace

`

σ1∇2Wpsx,xqσ
˘

(21)

Because this problem satisfies the Bellman-Isaacs condition, the order of the max-min operators is
interchangeable. Taking the first order condition w.r.t. sc yields sc˚ “ δ

µp . Plugging this form into (21)
leads to

δ log sc˚ ` µppsd´ sc˚q “ δ log δ ´ δ logµ´ δ log p` µpsd´ δ

Taking the minimum of this w.r.t. µ ě 0 implies µ˚ “ δ
p sd

and

δ log δ ´ δ logµ˚ ´ δ log p` µ˚psd´ δ “ δ log sd

Regarding the mininization w.r.t. sh, the FOC implies

sh˚ “ ´
1

`

«

α1e1 `

«

σ1 0

0 σ1

ff

∇Wpsx,xq

ff

Plugging all these into (21) leaves us with
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Figure 12: Results from jointly estimating the baseline model and twisting function parameters: stationary
distributions of the nominal (blue) and real (red) yield curves and the corresponding sample moments. Shaded
areas represent one standard deviation bands around the means (solid lines). Grey solid lines show the sample
average, the dashed lines are one standard deviation bands using the sample standard deviations.

δ
`

W psx, x, syq ´ log sd
˘

“ ∇W 1
psx,xq

˜«

φ

φ

ff

`

«

´κ 0

0 ´κ

ff«

sx

x

ff¸

`

”

sx1 x1
ı

«

ξ2 0

0 0

ff«

sx

x

ff

´
1

2`

˜

e11αα
1e1 ` 2e11α

«

σ1 0

0 σ1

ff

∇Wpsx,xq `∇W 1
psx,xq

«

σσ1 0

0 σσ1

ff

∇Wpsx,xq

¸

`

`

”

e11β1 ´
`
2ξ
1
1 0

ı

«

sx

x

ff

` e1 ¨ β0 ´
`

2
ξ0 `

1

2
trace

`

σ1∇2Wpsx,xqσ
˘

where

∇Wpsx,xq “ 2

«

w
sx w

sxsx w
sxx

wx w1
sxx wxx

ff

»

—

–

1

sx

x

fi

ffi

fl

“ 2

«

w
sx

wx

ff

` 2

«

w
sxsx w

sxx

w1
sxx wxx

ff«

sx

x

ff

Matching coefficients while considering the equations blockwise, it is striaghtforward to see that

w
sxsx “ sυ2 and w

sxx “ wxx “ 0

where sυ2 is the solution of the planner’s Riccatti equation in (16). This results in the linear terms

w
sx “ υ1p`q and wx “ 0

where υ1p`q comes from (17). This immediately implies that w0 “ υ0p`q from (18) and ` “ `˚ from (19)
proving that sH “ H˚ and sC “ D.
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Figure 13: Autocorrelation functions computed from raw data (green lines) and from the estimated model (22).
Black lines show the baseline model, red lines show autocorrelations under the worst-case model. Shaded area
represents 2ˆGMM standard error bounds computed with the Newey-West estimator including 4 quarter lags.

C One-step estimation of the parameter vector

This appendix provides details about the efficient maximum likelihood estimation of the parameter
vector ψ. Combining the baseline model (13) with the zero-coupon yield formula (14) (for the three
nominal and two real interest rates) give rise to the following state-space model:

»

—

—

—

—

—

—

—

—

—

—

—

—

–
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πt`1
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y
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y
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fi
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ffi

ffi

ffi

ffi

fl
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ffi

ffi

ffi

ffi

ffi
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—
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–
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nom

b
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ffi
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ffi

ffi

ffi
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Xt `

«

αD 02ˆ5

05ˆ2 σmI5

ff

εt`1

Xt`1 “ κDXt `

”

σD 02ˆ5

ı

εt`1

(22)

where εt`1
iid
„ N p0, I7q. Just like in the case of the two-step procedure, (1) I normalize the αD matrix

by assuming that it is lower-triangular, (2) I assume a single measurement error applied to all yield
variables, (3) I let the a and b vectors be functions of the twisting function parameters psξ0, sξ1, sξ2, sξ3q

using the differential equations in (12). Similar to the main text, I impose sξ0 “ 0. Estimating this
system with maximum likelihood leads to the point estimates in Table 7. As expected, the asymptotic
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standard errors are somewhat smaller than those obtained from the two-step procedure.

κD σD βD0 αD ξ2

0.861 -0.018 0.080 -0.027 0.508 0.425 0.000 0.151 -0.145
(0.033) (0.016) (0.016) (0.010) (0.049) (0.015) - (0.073) (0.021)
0.039 0.977 -0.015 0.083 0.646 -0.121 0.285 -0.145 0.061
(0.019) (0.010) (0.010) (0.007) (0.102) (0.015) (0.004) (0.021) (0.007)

Table 7: Maximum Likelihood estimates and asymptotic standard errors (in parentheses) for the model (22). The
likelihood is initialized at the stationary distribution of X. αD is normalized to be lower triangular.

All in all, the parameter estimates are similar to the ones obtained from the two-step procedure in Table
1 with one key exception: the baseline consumption and inflation dynamics are estimated to be more
persistent while the shocks to the state variables are estimated to be smaller than before. Clearly, using
price information in the estimation of the baseline dynamics makes some of the extra persistence—that
I attributed to robust probability twisting in the main text—part of the baseline model at the cost of
a worsened overall fit of the macro data. This finding sheds some light on the issue that has led me
to prefer the two-step estimation procedure: asset prices accompanied with an extensive set of cross-
equation restrictions can alter inferences about the behavior of consumption and inflation relative to
when inferences are made from the quantity data alone.

In spite of the more persistent estimated baseline dynamics, the main qualitative features of the worst-
case model important for my analysis remain unchanged. One can see this by comparing Figures 12
and 13 with Figures 4 and 5, respectively. Interestingly, Figure 12 shows that the smaller (and more
persistent) state fluctuations emerging from the one-step estimation procedure result in much less yield
curve variation on both ends of the yield curve.
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