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Abstract

We use computational Bayesian methods to estimate parameters of a statistical model of gold, greenback,
and real yield curves for US federal debt from 1791 to 1933. Posterior probability coverage intervals indicate
more uncertainty about yields during periods in which data are especially sparse. We detect substantial
discrepancies between our approximate yield curves and standard historical series on yields on US federal
debt, especially during War of 1812 and Civil War surges in government expenditures that were accompanied
by units of account ambiguities. We use our approximate yield curves to describe how long it took to achieve
Alexander Hamilton’s goal of reducing default risk premia in US yields by building a reputation for servicing
debts as promised. We infer that during the Civil War suspension of convertibility of greenback dollars into
gold dollars, US creditors anticipated a rapid post war return to convertibility at par, but that after the war
they anticipated a slower return.

JEL classification: E31, E43, G12, N21, N41
Key words: Big data, default premia, yield curve, units of account, gold standard, government debt, Hamil-
tonian Monte Carlo, Julia, DynamicHMC.jl, pricing errors, specification analysis.

∗We thank Clemens Lehner for outstanding research assistance and Min Wei and audiences at the Minnesota Workshop in
Macroeconomic Theory and a University of Sydney seminar for suggestions. The views expressed here are those of the authors and
do not necessarily represent the views of the Federal Reserve Board or its staff.

†Brandeis University, Department of Economics. Email: ghall@brandeis.edu
‡Princeton University, Department of Economics. Email: jepayne@princeton.edu
§New York University, Department of Economics and Hoover Institution, Stanford University. Email: thomas.sargent@nyu.edu
¶Federal Reserve Board. Email: balint.szoke@frb.gov



1 Introduction

Determinants of interest paid on US government bonds have forever preoccupied US politicians and economists.
In his 1790 Report on Public Credit, 34 year old Alexander Hamilton argued that the US could lower interest
costs by restructuring political institutions to sustain tax, spending, and debt-servicing policies that would
promote expectations among foreign and domestic lenders that the US federal government would service its
debts as promised. Hamilton and other framers of the US Constitution designed arrangements to sustain
subsequent federal government actions that, by reducing the substantial default-risk premia that in the 1780s
markets assigned to debts that had been incurred by US Continental Congresses and US states to pay for the
War of Independence, would allow the federal government to borrow at low interest rates in the future. To some
Federal officials after Hamilton, “reducing interest payments” meant something different. Thus, when President
Andrew Johnson and much of the Democratic party proposed to reduce debt servicing costs after the US Civil
War, they intended to accomplish that by redefining the unit of account from gold to inconvertible paper dollars
(greenbacks) that were then trading at a substantial discount relative to gold. That units-of-account sleight
of hand was contested in the 1868 election. During the 1868 Presidential election campaign, the Republican
party and its candidate General Ulysses S. Grant promised to sustain the practice of servicing Federal debts
in gold dollars that Alexander Hamilton had proposed in 1790. Grant won. President Grant said this at his
inauguration:

A great debt has been contracted in securing to us and our posterity the Union. The payment of
this, principal and interest, as well as the return to a specie basis as soon as it can be accomplished
without material detriment to the debtor class or to the country at large, must be provided for.
To protect the national honor, every dollar of Government indebtedness should be paid in gold,
unless otherwise expressly stipulated in the contract. Let it be understood that no repudiator of one
farthing of our public debt will be trusted in public place, and it will go far toward strengthening
a credit which ought to be the best in the world, and will ultimately enable us to replace the debt
with bonds bearing less interest than we now pay. U. S. Grant, March 1869

This paper uses a long but thin historical data set and a parameterized statistical model to infer term
structures of yields on US Federal bonds from data that Hall et al. (2018) assembled on prices and quantities of
US Federal bonds that promised to pay sequences of US dollars from 1791 to 1947. Our analysis is complicated
by the presence of two types of US dollars during and after the Civil War, gold coins and greenback dollars,
and a variety of monetary policy regimes.1 Consequently, we estimate a gold denominated yield curve for the
gold-standard period from 1791-1933 and a greenback denominated yield curve for the temporary and permanent
deviations from the gold standard during 1862-1878 and 1933-1947 respectively. This analysis requires us to
estimate gold-greenback exchange rate expectations throughout the temporary gold-standard deviation in 1862-
1878. We then combine our nominal yield curve estimates with existing post-WW2 estimates and inflation data
to estimate a real yield curve from 1791-2020.

In parametrizing and estimating a stochastic process for yield curves on US Federal bonds, we confront
several challenges: (1) nineteenth century US Federal bonds often gave lenders and borrowers discretion over
maturity dates, conversions, and other features, (2) nineteenth century macroeconomic data are unreliable,
(3) nineteenth century US Federal bonds carried haircut risks, (4) data are sparse, (5) different bonds were

1George Washington and Alexander Hamilton introduced a gold standard in 1791 that was theoretically maintained until 1933,
at which point Franklin Roosevelt accepted Irving Fisher’s advice to abandon the gold standard. Edwards (2018) describes how the
US defaulted on its promises to pay gold dollars, and Rothbard (2002) describes how Irving Fisher influenced President Roosevelt’s
decision to leave the gold standard. The US also temporarily departed from the gold standard from 1862-1878, during which time
gold and greenback dollars exchanged at a market-determined exchange rate.
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denominated in different types of dollars between 1862 and 1878 when gold and greenback dollars coexisted,
and (6) we fear pricing errors. We address challenge (1) by assuming agents priced bonds under perfect foresight
about discretionary contract features. Complications (2) and (3) of working with nineteenth century data guide
our identification assumptions. We adopt an approach that packages default risk with a stochastic discount
factor. That allows us to estimate the US Federal government’s cost of bond financing using only historical
bond prices and money exchange rates. A cost that we pay for this taking shortcut is that we do not directly
estimate a stochastic discount factor process and don’t explicitly impose absence of arbitrage opportunities.

Bond data limitations (4) and (5) guide our yield curve parametrizations. Economists at the Federal Reserve
Board and other research institutions use a similar parameterization, but in inferring a yield curve from observed
prices and quantities they face a different problem than we do. Because they have a superabundance of cross-
section data on prices and quantities at each date, they solve an overdetermined inference problem. Our data
set is too sparse along the cross-section dimension to allow us to use even a just-identified version of the Federal
Reserve Board’s procedure. To confront this data deficiency, we enlist a prejudice or induction bias in the form of
a parameterized statistical model of a panel having scattered missing observations. Relative scarcities of data for
gold denominated and greenback denominated bonds shape our approach. We have 255 gold denominated bonds
in our sample (throughout the period from 1790-1933), so we parametrize the gold yield curve by modifying a
time-varying version of a statistical model proposed by Nelson and Siegel (1987). This brings 7129 parameters.
We have only 9 greenback denominated bonds so, instead of directly parametrizing the greenback yield curve,
we construct a multiplier that transforms a gold denominated yield curve into a greenback denominated yield
curve and parametrize this multiplier with a state space model of money prices. This brings ‘only’ 430 additional
parameters. We use our parametrized statistical model to compute probabilities of parameters conditioned on
our data – our way of using the data to learn about parameters that tie down posterior probability distributions
of yield curves at all dates in our panel. Our data and statistical model tell us how much smoothing across time
to do.

We approximate posterior probabilities by deploying Hamiltonian Monte Carlo and No U-Turn sampling.2

Our data set presents technical difficulties that prevent us from applying the “standard” Stan toolkit: the
number of observed assets change over time, the bonds have payoff streams of varying lengths, there are periods
without price observations, the relevant set of bond-specific pricing errors changes over time in a complicated
fashion, and we need to estimate exchange rate expectations for the sub-period 1862-1878. To tackle these
difficulties, we code the log posterior function of our model from scratch in Julia (Bezanson et al., 2017) and
feed it into the DynamicHMC.jl package by Papp et al. (2021), which is a robust implementation of the HMC-
NUTS sampler that mimicks many aspects of Stan. An advantage of this package is that it allows the user to
provide the Jacobian of the log-posterior manually and so that we don’t have to rely on automatic differentiation
for a model with 7, 500+ parameters. Our application of the DynamicHMC.jl package can be used for other
economic models with tractable likelihood functions that don’t easily fit into the Stan framework.

Our responses to challenges (1)-(5) assemble a collection of assumptions that allow us to derive and estimate
our asset pricing equations. A final challenge (6) arises because there are good reasons to believe that particular
bonds may violate these assumptions in some periods. We address this issue by introducing bond-specific pricing
errors. This approach decreases influences of peculiar bonds on our yield estimates while still informing us about
situations when our collective assumptions prevent us from consistently pricing our cross-section of bonds using
our pricing formulas. We use these errors to refine our characterization and selection of the US Federal bonds
used to estimate yield curves. We view this error inspection approach as being in the spirit of Hansen and

2Hamiltonian Monte Carlo is named after mathematician and physicist William R. Hamilton, not US Secretary of the Treasury
Alexander Hamilton.
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Jagannathan (1997).
We can use our estimated US Federal debt yield curve to supplement informal historical stories about times

of fiscal stress by adding numbers and measures of our uncertainty about them. By listening to how our data
speak to us through our economic-statistical model, we detect patterns in 19th century yield curves that set the
stage for comparisons with 20th and 21st century patterns. Some of our findings are:

• Our estimates of yields differ substantially from widely used ones, especially during some episodes of fiscal
stress.

• While yield curves usually sloped upward, “inversions” occurred during major wars, the late 1820s, the
mid 1890s, and before the Great Contraction that began in 1929.

• Yields have trended downward since 1790.

• US yields initially exceeded yields on British consols, but by 1880 the spread had vanished. It seems to
have taken most of the nineteenth century for US debt to become “safe”.

• During the Civil War suspension of gold convertibility, creditors initially expected a rapid return to par.
They became less certain about that in the post-Civil War period. What seemed to be a strong “nominal
anchor” during the Civil War apparently weakened in the post-war period after the US did not immediately
return to the gold standard.

• Our yield curves allow us to approximate the market value of marketable federal debt and improve widely
used estimates of debt-to-GDP ratios in the 19th century.

• Our nineteenth century real yield curves belie an inference drawn in widely cited regression studies of
historical US time series that surges of government expenditures and deficits associated with big wars
were not accompanied by higher yields on US government debt.

• The US fought more wars after costs of financing war time surges in government purchases dropped.

Related Work

Homer and Sylla (2004) construct time series of yields to maturity on 10-year Federal treasuries, New England
Municipal Bonds, and Corporate Bonds.3 The closest counterpart to ours is their yield to maturity on 10-year
treasuries, which they compute as coupon rated on US federal bonds that have approximately 10 years to
maturity and trade close to par. Estimating yield curves allows us to compute term spreads. It also allows us to
fill in the Homer and Sylla (2004) 10-year yield series during periods like the Civil War, when they are unable to
apply their methodology. Remarkably, Homer and Sylla (2004)’s 10-year Federal treasury series is often not the
long-term US bond series used by economic historians. Instead, researchers (e.g. Officer and Williamson (2021),
Shiller (2015), Jordà et al. (2019), and Hamilton et al. (2016)) have typically used a ‘composite series’ that
combines the Homer and Sylla (2004) estimates for the period from 1798-1861 with the yield-to-maturity on a
set of the New England municipal bonds for the period 1862-1899 and the yield-to-maturity on corporate bonds
for the period 1900-1940. We provide evidence that this blended series underestimates costs of government
financing during the Civil War and overestimates those costs after the War because it calculates yields on high-
grade state or corporate bonds rather than on US Federal debt.4 Technically, our work is related to Svensson
(1995), Dahlquist and Svensson (1996), Cecchetti (1988), Annaert et al. (2013), Andreasen et al. (2019), Diebold

3A yield to maturity is also called an internal rate of return.
4See Siegel (1992), in particular Section 2.2.
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and Li (2006) and Diebold et al. (2008) who like Gürkaynak et al. (2007) and ourselves implement versions of
the parametric yield curve model of Nelson and Siegel (1987). Our analysis of events during the greenback
period from 1862 to 1879 revisits issues in landmark studies of Mitchell (1903, 1908) and Roll (1972).

Section 2 describes data. Section 3 provides a glossary for notation. Section 4 outlines a theory of zero-
coupon bond yields and describes how we parametrize yield curves. Section 5 delineates our econometric
strategy. Section 6 discusses statistical inferences about gold denominated yield curves. Section 7 discusses
statistical inferences about greenback denominated yield curves and gold-greenback price expectations during
and after the Civil War. Section 8 discusses statistical inferences about real yield curves. Section 9 concludes.

2 Data and Context

We describe our data, provide historical context on characteristics of 19th century US federal monies and
bonds, and outline challenges that these characteristics pose for yield curve estimation. These challenges shape
specification and estimation strategies deployed in Sections 4 and 5.

2.1 Data Sources

We have assembled prices, quantities, and descriptions of all securities issued by the US Treasury between 1776
and 1960. Figures 14 and 15 (at the end of the paper) summarise issue sizes, durations, and coupon rates. The
full data set is available at the Github repository https://github.com/jepayne/US-Federal-Debt-Public

and construction methods are explained in Hall et al. (2018).5 In this section, we spotlight decisions about our
data that we made to prepare for the econometrics presented in this paper.

Our bond price data are at a monthly frequency. When available, we use the closing price at the end of
each month. However, if a closing price is not available, then we use an average, bid, or ask price (in that order
of precedence)6. The primary sources for the price data from 1776 to 1839 are Razaghian (2002) and Sylla
et al. (2006). Prices from 1840 to 1899 are from Razaghian (2002), Martin (1886), the Merchants’ Magazine
and Commercial Review, the Commercial and Financial Chronicle, the New York Times, and Global Financial
Data. Prices from 1900 to 1918 are from the Commercial and Financial Chronicle and US Treasury Circulars.
When overlaps occurred, data were taken from the US Treasury Circulars. Prices from 1919 to 1925 are from
“United States Govt. Bonds” tables in the New York Times. Prices after 1925 are taken from the CRSP US
Treasury Database.7

The quantity data are quarterly from 1776 to 1871 and monthly thereafter. All quantity entries record the
quantity outstanding on the last business day of the period. The quantities outstanding from 1790 to 1871 are
imputed from the issue and redemption series reported by Bayley (1882). We cross-checked these quantities
against quantity outstanding series reported in Register’s Office (1886). After 1871 our source for quantity
outstanding series is the United States Department of the Treasury (2015) Monthly Statements of the Public
Debt. The call data are from Annual Reports of the Secretary of Treasury for various years. Data on Treasury
securities held in government accounts are from Banking and Monetary Statistics 1914-1941 prior to 1941 and
from Treasury Bulletin thereafter.8

Data on contractually promised dollar payments come from Bayley (1882) for the period from 1790-1871 and
from United States Department of the Treasury (2015) Monthly Statements of the Public Debt for the period
from 1872-1960.

5Only data from publicly available data sets are posted on the GitHub page.
6The order of precedence is chosen based on data availability
7See http://www.crsp.com/products/research-products/crsp-us-treasury-database.
8See Board of Governors of the Federal Reserve System (1943) and Register’s Office (1886).
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We require data on greenback-gold dollar exchange rates to estimate the greenback and real yield curves.
For the gold to greenback exchange rate, we use Greenback price data from Mitchell (1908)9 for the period from
1862-1878 during which both greenback and gold dollars circulated. For the gold to goods exchange rate, we
combine a number of series. For the period from 1800-1860, we use the wholesale price index from Warren et al.
(1932). For the period from 1860-1913, we use the General Price Level Index from the NBER Macroeconomics
Database10. For the period from 1913-2020, we use the Consumer Price Index from the U.S. Bureau of Labor
Statistics.

2.2 19th Century Dollars

Between April 1792 and February 1862, the US dollar was defined in terms of gold and silver.11 Except for the
activities of the monopoly First (1791-1811) and Second (1816-1836) Banks of the United States, the federal
government issued no paper notes, only gold and silver coins. Private state-chartered banks issued paper notes
convertible into gold on demand. In January 1862, these banks stopped honoring their legal obligation to convert
their notes into specie (they “suspended” convertibility).

On February 25, 1862, Congress passed a Legal Tender Act that authorized the Treasury to issue 150 million
dollars of a paper currency known as greenbacks that the government did not promise immediately to exchange
for gold dollars. Subsequent acts authorized the Treasury to issue more notes, eventually totalling 450 million
dollars. Investors could use greenbacks to purchase bonds from the federal government at their par values.
Gold dollars continued to be used for settling international transactions and for paying US tariffs. From 1862
to December 31, 1878 paper notes (“greenbacks” or “lawful money”) traded at a discount relative to gold
dollars (“gold” or “coin”). Figure 1 plots the greenback to gold exchange rate12 and the prices of outstanding
bonds. The greenback depreciated in value substantially during the Civil War and did not attain parity with
gold until January 1, 1879 when the US Treasury stood ready to convert dollars into gold dollars one-for-one.
Convertibility between gold and paper currency at par prevailed until 1933 when Franklin Roosevelt increased
the paper price of gold and prohibited private US citizens from holding gold coins.

2.3 19th Century US Federal Bonds

Before World War I, the federal government issued bonds infrequently and quantities of new bonds issued were
often small. The US Congress, rather than the Treasury, designed each government security with the consequence
that securities varied over time in terms of their coupon rates, denominations, lengths, units of account, tax
exemptions, and call features. Before the 1920s, the federal government occasionally issued customized long
term debt, mostly to finance specific infrastructure projects, debt reschedulings, and wars. As a result, between
1776 and World War I, the US Congress only authorized the Treasury to issue a total of approximately 200
distinct securities, with at most 8 distinct ones being authorized in any one year.

From 1917 to 1939, Congress progressively delegated all decisions about designing US debt instruments to
the Treasury and the Treasury gradually standardized security design. As a result, from 1920 to 1960 alone, the
Treasury issued about 2500 securities with a wide range of maturities. Ultimately, this transformed the market
for US Treasury securities into the world’s most liquid debt market with a collection of standardized securities
at many maturities that allowed a large national debt to be issued and rolled over, seemingly perpetually.

9See Table 2
10See https://www.nber.org/research/data/nber-macrohistory-iv-prices
11Prior to 1792, a dollar referred to a Spanish silver coin.
12The exchange rate is stated as the number of greenback dollars required to purchase 100 gold dollars.
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Figure 1: Prices of Gold and Bonds: 1860-1880.

The solid orange line depicts the greenback to gold exchange rate (expressed as the number of greenback dollars required to
purchase 100 gold dollars). The dashed lines depict observed prices (denominated in greenbacks) for the outstanding bonds. The
light red interval depicts the Civil War.

2.4 Estimation Challenges

Skilled researchers have estimated yield curves on US federal debt in the post-WW2 period, by which time
Federal debts had became standardised and government bonds for sale had become plentiful. We estimate yield
curves starting in 1791 and so have to confront estimation challenges posed by peculiar structures of US Federal
bond markets before 1920. This requires us to address the following issues.

(1) How should we handle peculiar bonds?

Throughout our sample, many US Treasury securities had custom features such as flexible maturities and
conversion options. In principle, we could attempt to construct custom pricing formulas for each bond
using the universe of possible derivatives. In practice, we start by arbitrarily “converting” idiosyncratic
contract features into those of more standard bonds. We do this by imposing perfect foresight about the
discretionary components of the contracts. For bonds that specified a window during which the government
could call the bond or bond holders could the redeem the bond, we impose that agents were pricing the
bonds knowing the future redemption date.13 For bonds that could be converted into other bonds, we
impose that agents were pricing bonds knowing the cash flows of the new bond after conversion. We refine
the perfect foresight assumption by studying bond pricing errors.

(2) How should we handle periods that provide sparse or inaccurate macroeconomic data?
13More specifically, we impose perfect foresight in the following way. For callable bonds, we set the maturity date to the date at

which the government called the bond. For redeemable long term bonds (greater than 3 years maturity) and/or bonds that pay
regular coupons, we set the maturity date to the last date at which any of the bonds could be redeemed. For redeemable short term
bonds (less than 3 years maturity) that pay coupons at maturity, we set the maturity date to the last date at which bonds were
issued plus the duration of the bond and match total coupon payments with bond duration. For example, for a 1-year bond, this
means we impose that only one year’s coupons are paid at redemption, regardless of the date at which the bond was redeemed.
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In principle, we could attempt to use historical macroeconomic data to estimate a model of the stochastic
discount factor that prices macroeconomic risks. However, we are skeptical about the quality of nineteenth
century macroeconomic data, especially at high frequency. For this reason, we start by estimating a
“theory-lite” model that sidesteps directly specifying a stochastic discount factor process. As we outline
in section 4, this approach still allows us to estimate the US Federal government’s cost of finance via debt
issues without recovering a stochastic discount factor. We leave for a future work an attempt to use noisy
historical macroeconomic data to estimate directly a stochastic discount factor process.

(3) How should we handle haircut risk?

Today, US federal debt is often assumed to carry no haircut risk. That assumption is implausible for much
of the nineteenth century. Although the US federal government never officially imposed haircuts on debt
holders, it faced several crises during the nineteenth century (e.g., the War of 1812 and the Civil War) that
threatened to leave the US federal government unable or unwilling to repay its debts. State governments
also recurrently defaulted during the nineteenth century, and the Confederate States of America defaulted.
We address this difficulty by packaging haircut risk with a stochastic discount factor, by imposing that
haircut risk is common across government bonds, and ultimately by estimating prices of risky government
promises. We tell how we do this in section 4.1.

(4) How should we handle periods with sparse bond data?

The Federal government issued few securities during the 19th century so that we have a limited number
of price observations. We can see this in Figure 2, which shows monthly time series for the number of
securities with observed prices and times to maturity (in years) of all outstanding bonds. The gold color
scheme represents gold denominated bonds. The green color scheme represents greenback denominated
bonds. The gray color scheme represents the five-twenties, which had an ambiguous denomination. There
were often fewer than 5 price observations in a given period, often only for bonds with long maturities. We
have no prices in the late 1830s because there were no federal securities outstanding then. This means that
while we have “big data”, our unbalanced sample prevents us from applying commonly used techniques
from the yield curve estimation literature (e.g., Gürkaynak et al. (2007) take advantage of the abundance
of post-WW2 data to estimate a yield curve day-by-day). Instead, we must posit a statistical model
that lets us learn about yields at all dates simultaneously by pooling information across time periods.
We do this by first imposing a time-varying Nelson and Siegel (1987) style parametrization of the gold
denominated yield curve in section 4.2 and then “smoothing” parameter updates in section 5.1.

(5) How should we handle greenback denominated bonds, 1862-1872?

When gold and greenback dollars coexisted (1862-1872), different US Treasury bonds promised payments
in different currencies. Some bonds promised all payments in gold (we refer to these as “gold” denominated
bonds); other bonds promised all payments in greenbacks (we refer to these as “greenback” denominated
bonds); and yet other bonds offered coupons in gold but left ambiguous whether the principal would
be paid in gold or greenbacks (we refer to these as “ambiguously” denominated bonds). While bonds
denominated in different currencies present an opportunity because they allow us to estimate both gold
and greenback denominated nominal yield curves, they create additional challenges. One difficulty is that
we observe only 9 greenback denominated bonds and only 6 ambiguously denominated bonds. This means
that our sparse cross-section problem is worse for estimating the greenback yield curve. Consequently, we
use information from the gold denominated bonds to help estimate the greenback yield curve. We do this
in section 4.3, where we construct a multiplier process that transforms the gold denominated yield curve
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into a greenback denominated yield curve; we describe the evolution of the multiplier with a parameterized
state-space model of dollar prices and parametrize the relationship between the multiplier and the gold
yield curve by imposing that inflation is independent of haircut risk and real variables.

(6) How should we treat pricing errors?

Our responses to the previous questions impose a collection of assumptions: perfect foresight about discre-
tionary contract components, common haircut risk and/or convenience yields across all government bonds,
and independence between inflation and haircut risks. These assumptions allow us to derive and estimate
our asset pricing equations. However, there are good reasons to think that in some periods particular
bonds violate these assumptions. We address this issue in section 5.2 by introducing bond-specific price
errors. This decreases the influence of peculiar bonds on our yield estimates while still informing us about
situations when our collective assumptions prevent us from consistently pricing our cross-section of bonds
using our pricing formulas. We view this error inspection approach as being in the spirit of Hansen and
Jagannathan (1997).
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Figure 2: The top panel depicts the number of securities with observed prices each month. The bottom panel
depicts maturities (in years) of observed securities. Darker lines indicate overlapping securities. Red bars
correspond to wars.

3 Glossary

i Index for a particular bond. 10

j Number of periods until a bond payout. 10
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n Index for type of dollar: n = g indicates gold dollars, n = d indicates greenback dollars, n = a indicates
denomination is ambiguous. 11

m
(i,n)
t+j Number of dollars of type n promised by bond i at time t+ j. 11

m
(i,n)
t+j Number of dollars of type n actually paid by bond i at time t+ j. 11

ξ
(i,n)
t+j := m

(i,n)
t+j /m

(i,n)
t+j Fraction of promised payment of dollars of type n that is actually paid. 11

c
(i,n)
t+j Amount of composite consumption good delivered by bond i at time t+ j. 11

p
(i,j,n)
t Price (in units of gold) of a zero-coupon bond i that promises m(i,n)

t+j dollars of type n at time t+ j. 11

q
(j,n)
t Price (in dollars of type n) of a zero-coupon bond i that promises 1 dollar of type n at time t+ j. 12

z
(j)
t Multiplier that converts gold price q(j,g)

t into greenback price q(j,d)
t . 14

w
(j)
t Multiplier that converts gold price q(j,g)

t into ambiguous price q(j,a)
t . 43

S Stochastic discount factor (SDF) process. 11

e
(n)
t Amount of composite consumption good required to purchase 1 unit of dollar of type n (i.e., goods price

of dollar of type n). 11

Pt := e
(d)
t /e

(g)
t Number of gold dollars paid for 1 greenback dollar at time t (i.e., the gold price of greenbacks

at time t). 11

4 Parameterized Yield Curves

At a given date, a term structure of interest rates is a list of yields on zero-coupon bonds of maturities j =
1, 2, . . . , J . We approximate term structures of gold denominated, greenback denominated, and real (i.e., goods-
denominated) US Federal securities. Because the US government did not issue zero-coupon securities of all
maturities, we must approximate zero-coupon yield curves on US Treasury debt indirectly from observed prices
of a limited set of federal government securities having differing coupons, par values, and maturity dates. As
discussed in section 2, inference is especially challenging before World War I because the Treasury issued bonds
infrequently; bonds contained default risk; and bonds differed on whether they promised to pay gold dollars,
silver dollars, or greenbacks that floated relative to gold and silver dollars, their tax exemptions, their investor
redemption options, and government call options. To make progress, we impose a collection of assumptions that
allow us to parametrize stochastic processes for yield curves on US Federal bonds. In section 4.1, we outline how
we package the stochastic discount factor with haircut risk rather than estimating a stochastic discount factor
process directly. In sections 4.2 and 4.3, we outline our parametrizations of gold denominated and greenback
denominated yield curves. Data limitations shape these parametrizations. In section 4.4, we interpret identifying
assumptions in terms of risk premia. In section 4.5, we bring all of our assumptions together to construct pricing
equations for the yield curve.

4.1 Zero-Coupon Federal Government Bonds

Consider a setting with a composite consumption good, gold dollars, greenback dollars and a collection of zero-
coupon bonds, some of which promise payouts in gold dollars, other of which promise greenback dollars. We
use gold dollars as numeraire. Suppose that a particular j-maturity zero-coupon bond, indexed by i, promises
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to pay m(i,n)
t+j units of type n dollars at time t + j, where n ∈ {g, d} denotes gold (g) or greenback (d) dollars.

To acknowledge default risk and currency risk, we denote a bond’s ex post actual payment of n dollars in period
t + j by m

(i,n)
t+j and the bond’s actual payment in terms of consumption goods as c(i,n)

t+j . Let p(i,j,n)
t denote

the price of such a bond in units of gold dollars. Let e(n)
t denote the quantity of consumption goods that can

be exchanged for one dollar of type n at time t (i.e., the consumption goods price of dollars of type n). Let
Pt := e

(d)
t /e

(g)
t denote the quantity of gold dollars that can be exchanged for 1 greenback dollar at time t (i.e.,

the price of greenbacks in terms of gold dollars at time t). We invoke two assumptions throughout.

Assumption 1. For each t ≥ 0, there exists a non-negative stochastic discount factor (SDF) stochastic process
S(t) that can price all government bonds.

This peculiar technical assumption lets us adapt some formulas from asset pricing theory. We specify a separate
SDF process at each t rather a single SDF to ensure that our asset pricing formulas are compatible with the
version of the Nelson and Siegel (1987) parametrization that we adopt in section 4.2.14 With some abuse of
notation, we drop the explicit superscript on the SDF to simplify the expressions. The stochastic process at
time t verifies:

e
(g)
t p

(i,j,n)
t = Et

[(
St+j
St

)
c
(i,n)
t+j

]

where e(g)
t p

(i,j,n)
t is the goods price of the zero-coupon bond, the SDF St is measured in time 0 consumption

goods per time t, and Et denotes a mathematical expectation conditional on time t information. A bond’s
payout of consumption goods satisfies c(i,n)

t+j = e
(n)
t+jm

(i,n)
t+j , so that we can rewrite the preceding equation in

terms of claims on dollars of type n = g and n = d:

p
(i,j,n)
t =


Et
[(

St+j

St

)(
e

(g)
t+j

e
(g)
t

)
ξ

(i,g)
t+j

]
m

(i,g)
t+j , if n = g

PtEt
[(

St+j

St

)(
e

(d)
t+j

e
(d)
t

)
ξ

(i,d)
t+j

]
m

(i,d)
t+j , if n = d

where we define a haircut fraction ξ
(i,n)
t+j := m

(i,n)
t+j /m

(i,n)
t+j ∈ [0, 1] and we are entitled to move e(n)

t and m
(i,n)
t+j

outside the conditional expectation operator because they are known conditional on time t information.
For convenience, we define:

q
(i,j,n)
t := Et

[(
St+j
St

) (
e

(n)
t+j

e
(n)
t

)
︸ ︷︷ ︸
Currency n
inflation risk

ξ
(i,n)
t+j︸ ︷︷ ︸

Haircut
risk

]
, (4.1)

which is the price of a promise to one dollar of type n at time t + j packaged with bond i’s haircut risk; it is
expressed in type n dollars. Observe that the right side of equation (4.1) prices two risks borne by bond holders:
risk in the goods value of currency n (captured by e(n)

t+j/e
(n)
t ) and haircut risk (captured by ξ(i,n)

t+j ). We can then
14Several authors have studied how to reconcile time varying versions of the Nelson and Siegel (1987) parametric yield curve

specification with an arbitrage free asset pricing theory and a single SDF process that would be associated with it. Our model
is closest to Diebold et al. (2005), which imposes an autoregressive structure on the NS factors. Krippner (2015) shows that this
specification is an “eigenvalue approximation” to an arbitrage free affine asset pricing model, but Björk and Christensen (1999) and
Filipović (1999) argue that this approximation cannot be formalized. To deal with this issue, we assume a sequence of stochastic
discount factor processes. An alternative approach would be to use an augmented yield curve specification proposed by Christensen
et al. (2011). We do not choose this alternative approach here because we want to stay close to the Diebold et al. (2005) specification
that is more commonly used in applied work.
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express bond i’s price as:

p
(i,j,n)
t =

 q
(i,j,g)
t m

(i,g)
t+j , n = g

Ptq
(i,j,d)
t m

(i,d)
t+j , n = d

Notation Aside: So far, we have used real stochastic discount factor processes S . In the spirit of Piazzesi
and Schneider (2007), we can define a dollar n stochastic discount factor by:

S
(n)
t := Ste

(n)
t , ∀t ≥ 0

whose units are time 0 dollars of type n per time t dollar of type n. Zero-coupon bond prices satisfy:

q
(i,j,n)
t = Et

[(
S

(n)
t+j

S
(n)
t

)
︸ ︷︷ ︸
Dollar n
SDF

ξ
(i,n)
t+j︸ ︷︷ ︸

Haircut
risk

]
,

Assumption 2. For government securities, haircut fraction ξ(i,n)
t is independent of i and n at any time t so

that we write ξ(i,n)
t = ξt, for all government bonds i, dollar types n, and times t.

This assumption says that, within each time period, there is no cross-sectional variation in government haircut
risk because the government imposes the same haircut on all bonds outstanding at a time of default. As a result,
the price of a federal government promise to a dollar of type n is independent of i and is denoted q(j,n)

t . We
need this assumption to identify q(j,n)

t because, without it, the number of asset pricing equations would equal
the number of observed government bond prices. Zero-coupon government bond prices can thus be expressed
as:

p
(i,j,n)
t =

 q
(j,g)
t m

(i,g)
t+j , n = g

Ptq
(j,d)
t m

(i,d)
t+j , n = d

To transform zero-coupon bond prices into yields, we let y(n)
t := {y(j,n)

t }∞j=0 denote a type n dollar yield
curve in period t whose j-th component is

y
(j,n)
t := − log q(j,n)

t

j
.

As discussed in section 2, we do not directly estimate the SDF process, {S(t)}t≥0, because we cannot identify
the SDF using only the bond price and money exchange rate data we have available. Instead, we parametrize
and estimate the yields, y(n)

t , which means that we parametrize and estimate prices q(n)
t of risky government

promises. Evidently, we price these bonds using a formula that combines an SDF with dollar n inflation risk
and haircut risk.

Aside: Did Congress issue revenue bonds? Until the Second Liberty Bond Act of 1917, Congress se-
quentially directed the Treasury to sell particular securities, one issue at a time, and restricted spending the
proceeds on specific purposes (e.g., infrastructure, refinancing of old debt, military expenditures). However,
Congress has always allowed the Treasury to use general revenue to make coupon and principal payments rather
than dedicate specific revenue sources (e.g., tolls or land sales). In the language of municipal finance, Treasury
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bonds were and continue to be general obligation bonds, not revenue bonds. Consequently, had the Treasury
explicitly defaulted on its debt, it is not clear that some securities would have had more seniority than others.
For this reason, we start with assumption 2 and then inspect pricing errors for violations.

4.2 Parametrization of Gold Dollar Yield Curves

Here and in the following subsection, we impose additional assumptions to facilitate approximating gold and
greenback yield curves. Data limitations influence our assumptions. Because the US government issued many
bonds denominated in gold dollars, we can estimate gold denominated yield curves by imposing the yield curve
parameterization outlined in assumption 3. Because the US government issued few bonds denominated in
greenback dollars, to estimate greenback yield curves we impose further assumptions to be described in the next
subsection.

Assumption 3. The j-th component y(j,g)
t of a gold denominated yield curve takes the form

y
(j,g)
t = β0,t + (β1,t + β2,t)

[
1− exp

(
− j
τ

)]
/

(
j

τ

)
− β2,t exp

(
− j
τ

)
. (4.2)

with parameters βt := [β0,t, β1,t, β2,t]′ and τ .

This specification follows Nelson and Siegel (1987) and has a number of desirable features. First, it is flexible
enough to generate “typical yield curve shapes” (e.g., monotonic, humped, and S-shaped curves). Second, it
ensures that yields converge as maturity goes to +∞, with β0,t parameterizing the asymptote. Third, separate
parameters shape different parts of the yield curve: β1,t at the short end of the yield curve, (β2,t, τ) for medium-
term yields. For simplicity, we collect the four yield curve parameters into the vector

β̃t :=
[
β0,t, β1,t, β2,t, τ

]′
.

Fourth, it is compatible with estimates of recent yield curves.15 Finally, it implies convenient formulas for a
gold denominated forward rate curve:

f
(j,g)
t = β0,t + β1,t exp

(
− j
τ

)
+ β2,t exp

(
− j
τ

)(
j

τ

)
Assumptions 1, 2, and 3 are sufficient to estimate gold dollar denominated yield curves if we restrict our

sample to gold denominated bonds. For this reason, we treat gold yield curves as our “baselines” throughout
the paper and then impose additional assumptions to restrict how greenback denominated bonds relate to these
baseline yield curves (in section 4.3).

4.3 Parametrization of Greenback Dollar Yield Curves

Assumption 3 parameterizes gold dollar yield curves but not greenback yield curves. Perhaps we could have
parameterized greenback yield curves in a similar way, but because we have far fewer price observations for
greenback denominated bonds than gold dollar denominated bonds, we did not. We instead proceed by adding
assumptions that let us use information about gold denominated bonds to help us estimate greenback yield
curves.

Assumption 4. Conditional on time t information, St+j and ξt+j are independent of e(g)
t+j and e

(d)
t+j .

15For example, Gürkaynak et al. (2007) use this form for the period 1961-1980. After 1980, they use an extension proposed by
Svensson (1994) to allow for a second hump in the yield curve regarded as a “convexity effect”.
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In the next subsection, we interpret this assumption in terms of risk premia . Here, we show how this assumption
links greenback dollar denominated yield curves to gold dollar denominated yield curves. Evidently:

q
(j,d)
t = Et

[(
St+j
St

)(
e

(g)
t+j

e
(g)
t

)
ξt+j

(
Pt+j
Pt

)]

= 1
e

(g)
t Pt

Et
[(

St+j
St

)
ξt+j

]
Et
[
e

(g)
t+jPt+j

]

= q
(j,g)
t

Pt

Et[Pt+j ] +
Covt

(
e

(g)
t+j , Pt+j

)
Et
[
e

(g)
t+j

]


where in the second line we used the simplifications afforded by assumption 4 to decompose the conditional
expectation. We define a conversion multiplier z(j)

t by

z
(j)
t := Et[Pt+j ] +

Cov
(
e

(g)
t+j , Pt+j

)
Et
[
e

(g)
t+j

] (4.3)

that verifies

q
(j,d)
t = q

(j,g)
t

z
(j)
t

Pt
.

We can express prices of zero coupon bonds as:

p
(i,j,n)
t =

 q
(j,g)
t m

(i,g)
t+j , if n = g

Ptq
(j,d)
t m

(i,d)
t+j = q

(j,g)
t z

(j)
t m

(i,d)
t+j , if n = d

Observe that price p(i,j,n)
t is in units of gold dollars at time t, price q(j,g)

t is in units of t-period gold dollars per
time (t + j)-period gold dollar, conversion multiplier z(j)

t is in units of (t + j)-period gold dollars per unit of
(t+ j)-period greenback dollars, and m(i,d)

t is in units of (t+ j)-period greenback dollars. Thus, the adjustment
factor z(j)

t converts greenback dollars to gold dollars in a way that acknowledges greenback-gold dollar exchange
rate risk.

To work with z(j)
t , we must know the period-t conditional expectation of future paths of Pt+j , the period-t

conditional expectation of future paths of e(g)
t+j , and a period-t conditional covariance between Pt+j and e(g)

t+j .
We parametrize these conditional moments by adopting a simple yet flexible statistical model for exchange rates.

Assumption 5. Joint dynamics of exchange rates vt := [Pt, e(g)
t ]′ obey a state-space model:

vt+1 = µt + xt + Fεv,t+1

xt+1 = Atxt +Kεv,t+1
εv,t+1 ∼ N (0, I2) , ∀t ≥ 0 (4.4)

where xt is a 2-vector hidden state with given initial x0, F and K are 2 × 2 matrices with F being lower
triangular. Parameters µt and At are allowed to be time varying. We collect the parameters from model (4.4)
into the vector:

ζt := [µ′t, vec(At)′, vec(F )′, vec(K)′]′ .
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Using the statistical model to compute the conditional moments that constitute the adjustment factor z(j)
t ,

we can write z(j)
t = z(j)(ζt).

Discussion of time varying µt and At. Following Cogley and Sargent (2005) and Cogley (2005), we interpret
time-variation in ζt as bondholders’ “changing beliefs” about future values of vt induced by shifts in fiscal-
monetary policy rules. During and after the Civil War, the direction of US monetary-fiscal policies recurrently
either shifted markedly or seemed to be on the verge of swerving onto another course. Dewey (1922, pp. 340–352)
described unfoldings of political struggles about how and whether to service or to tax bond holders or outright
to default on US bonds. After describing tentative steps initially taken in early 1866 to retire greenbacks, on
page 340 Dewey wrote that “. . . a great opportunity was lost, for public sentiment in the winter of 1866 would
have sustained a more rapid contraction; the country at large was expecting it, and the deed might have been
accomplished if Congress had had enough courage.” We cope with this situation by positing a shifting law of
motion for the relative value of greenback dollars. We assume that financial market participants understood
that policies were drifting and sought to adapt their beliefs accordingly. The vector ζt represents their period-t
beliefs about the currency price processes; ζt drifts as they learn. We assume that the pricing formulas in (4.5)
hold on a date-by-date basis, i.e., although agents keep updating their beliefs, they treat the updated ζt as if it
would remain constant forever. Kreps (1998) incorporates such behavior in his ‘anticipated utility’ model.

4.4 Currency Risk Premia

To elaborate assumption 4, we express yields in terms of currency risk premia. Define a risk-free real price and
risk-free real yield by:

q̂
(j)
t := Et

[
St+j
St

]
, ŷ

(j)
t := − log q̂(j)

t

j

Lemma 1. The difference between a dollar n yield and the risk free real yield is approximately:

y
(j,n)
t − ŷ(j)

t ≈ −
1
j

log

Et
[
e

(n)
t+j

]
e

(n)
t


︸ ︷︷ ︸

Expected dollar n
inflation

+ −1
j

logEt [ξt+j ]︸ ︷︷ ︸
haircut probability

+−1
j

(
Covt

(
ξt+j

Et [ξt+j ]
,

e
(n)
t+j/e

(n)
t

Et[e(n)
t+j/e

(n)
t ]

))
︸ ︷︷ ︸

Risk from haircut
& inflation comovement

+−1
j

(
Covt

(
St+j/St

Et [St+j/St]
,

ξt+j
Et [ξt+j ]

))
︸ ︷︷ ︸

Risk premium on
haircut risk

+−1
j

Covt

 St+j/St
Et [St+j/St]

,
e

(n)
t+j/e

(n)
t

Et
[
e

(n)
t+j/e

(n)
t

]


︸ ︷︷ ︸
Risk premium on
dollar n inflation

Proof. See appendix B.1.
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Assumption 4 implies

Covt

 ξt+j
Et [ξt+j ]

,
e

(n)
t+j/e

(n)
t

Et
[
e

(n)
t+j/e

(n)
t

]
 = Covt

 St+j/St
Et [St+j/St]

,
e

(n)
t+j/e

(n)
t

Et
[
e

(n)
t+j/e

(n)
t

]
 = 0,

so Lemma 1 highlights that the assumption turns off both a risk premium on dollar n inflation and exposures
to comovements between ξt+j and e(n)

t+j . It retains a risk premium on haircut risk.
Assumption 4’s stated independence between St and {e(n)

t : n ∈ {g, d}} has more than one possible economic
interpretation. One is that the economy satisfies a classical real-nominal dichotomy and that the money supply
does not feedback on real variables. In this case, real state variables determine a stochastic discount factor
process that evolves independently of nominal prices. The risk premium on dollar n inflation disappears because
there is no risk to price. An alternative interpretation might be that bond holders are risk neutral and so do not
price dollar n inflation risk. Such a risk neutrality assumption is too confining for us because it also eliminates
a risk premium on haircut risk, a feature we want to retain when in subsection 6.4 we compare yields on US
and UK debt.

The assumption of conditional independence between ξt and {e(n)
t : n ∈ {g, d}} succeeds in decomposing

default risks into two orthogonal components: a haircut risk, ξt+j , and a currency risk, e(n)
t+j/e

(n)
t . In ap-

pendix B.2, we discuss how to relax this conditional independence assumption and allow for “haircuts” through
denomination change.

4.5 Implementing Our Pricing Theory

Suppose that at time t we observe prices on an integer number Mt of coupon-bearing government bonds. To
reflect the diverse bonds in our sample, we allow a given bond, i, to promise of either: (i) a sequence of gold dollar
coupon and principal payments {m(i,g)

t+j }∞j=1, or (ii) a sequence of greenback dollar coupon and principal payments
{m(i,d)

t+j }∞j=1. We allow m
(i,n)
t+j to be zero, where n ∈ {g, d} indicates two types of dollar denominations. Most

bonds have finite maturities so we let J (i)
t denote the remaining number of periods with non-zero payments.16

As before, let p(i,n)
t denote the price of a type n dollar bond in terms of gold, where n ∈ {g, d}. To account for

differences in maturities and coupons, we view each coupon-bearing bond i as a basket of zero-coupon securities
and use pricing formulas:

p
(i,n)
t =


∑∞
j=1 q

(j,g)
t m

(i,g)
t+j , if n = g∑∞

j=1 q
(j,g)
t z

(j)
t m

(i,d)
t+j , if n = d

(4.5)

To prepare the way for expressing asset prices as inner products of price and quantity vectors, let:

• qt := {q(j,g)
t }∞j=1 denote a sequence of gold dollar zero-coupon bond prices

• zt := {z(j)
t }∞j=1 denote a sequence of greenback denomination adjustment factors

• m(i,n)
t := {m(i,n)

t+j }∞j=1 denote a sequence of promised coupon and principal payments in currency n where
n ∈ {g, d, a} and it is understood that m(i,n)

t+j = 0 for j > J
(i)
t .

16In case of perpetual consols, J(i)
t =∞.
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We can then write our pricing formulas as the inner products:

p
(i,g)
t =

〈
qt, m(i,g)

t

〉
gold dollar bonds

p
(i,d)
t =

〈
qt � zt, m(i,d)

t

〉
greenback bonds

where 〈·〉 denotes an inner product (on the space of real sequences) and � denotes a Hadamard (element-wise)
product. If we explicitly express qt and zt in their parametric forms, then this becomes:

p
(i,g)
t =

〈
q(β̃t), m(i,g)

t

〉
gold dollar bonds

p
(i,d)
t =

〈
q(β̃t)� z(ζt), m(i,d)

t

〉
greenback bonds

Observe that assumptions 3 and 5 parameterize qt and zt. This means that we can use information about
p

(i,n)
t , m(i,n)

t , and e
(n)
t for n ∈ {g, d, a} together with equations (4.2), (4.3), and (4.5) to infer parameters, β̃t

and ζt, that pin down our yield curves for greenback dollar and gold dollar denominated zero-coupon bonds.
We elaborate in the next section.

5 Econometric Strategy

Using our pricing formulas from section 4.5 we build a statistical model for which a likelihood function can be
derived. To this end, we introduce three types of Gaussian shocks: (1) shocks that move parameter vectors βt
and ζt over time, (2) pricing errors for each bond, and (3) forecast errors for the model of exchange rates. These
building blocks give rise to a richly parametrized—yet tractable—non-linear state space model. To estimate its
(more than 7, 500) parameters, we apply Bayesian Markov Chain Monte Carlo (MCMC) methods. We specify
weakly informative prior distributions for the model’s hyper-parameters (see Appendix C) with the specific
purpose of regularizing our estimator and facilitating smooth operation of the sampling algorithm. Importantly,
we do not aim to choose these priors to faithfully summarize our subjective beliefs, rather we view them as tools
that help our statistical model make reliable inference about the objects we care about.

5.1 Pooling Across Time

Assumptions 3 and 5 explicitly make the yield curve parameters βt and (some) parameters of the exchange rate
dynamics ζt time-dependent, which raises the question: how the different components relate to each other over
time? A widely used yield curve estimate—available for the period since 1960—by Gürkaynak et al. (2007)
assumes no intertemporal dependence among the four parameters in (4.2): they estimate a different set of βs
and τ for each t using only bond prices available at date t. Therefore, nothing learned about the yield curve any
one date contributes to their estimates for other dates no matter how close. Unlike the post-WW2 period, prior
to the First World War, price data are sparse and coverage varies across time. Consequently, we in effect need
to pool information over time to estimate a time series of yield curve parameters. To this end, we introduce a
multilevel (a.k.a. an hierarchical) statistical model.

Gold denominated yield curve: At any given t, the shape of the gold denominated yield curve is summa-
rized by four parameters: the three time-varying parameters in the βt vector and the time-invariant τ . Diebold
and Li (2006) show that the β parameters can be interpreted as latent “level”, “slope” and “curvature” factors
of the yield curve. We model these factors as random walks:
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Assumption 6. Parameter vector βt is a drift-less random walk:

βt = βt−1 + Σ 1
2 εβ,t εβ,t ∼ N (0, I3) , ∀t ≥ 1.

Parameter matrix Σ governs how evidence about a yield curve at one date affects inferences about yield
curves at other dates. The closer are two dates to each other, the more correlated are the associated yield
curves, with Σ capturing what “close” means. The case Σ → 0 corresponds to complete pooling: here the
yield curve is assumed to be fixed over time so that each observation has an equal influence as all other dates.
Contrary situations in which Σ → ∞ call for no pooling: there is no relationship between adjacent parameter
estimates, we use only period t information to estimate period t yield curve parameters as in Gürkaynak et al.
(2007). By inferring Σ from the data, we learn how much pooling across time we should do to improve estimates
in light of intertemporal imbalances in data availability.

We allow shocks to different components of βt to be correlated so that Σ need not be a diagonal matrix.
This enables us to infer relatively precise estimates of the short end of the yield curve throughout the whole
sample period. Indeed, the bottom panel of Figure 2 shows big gaps in the maturity structure for certain
sub-periods. In particular, the early decades of the 19th and 20th centuries are characterized by relatively few
short-term outstanding bonds. Assuming that different parts of the yield curve follow correlated but time-
invariant dynamics allows us to transmit what we learn about co-movements between short- and long-term
yields from years when many maturities are outstanding (as in the second half of the 19th century) to years
when data about short-term yields are scarce.

For numerical stability, we model correlation coefficients and variances of marginal distributions of shocks
to βt separately by decomposing covariance matrix Σ as17

Σ = ΞΩΞ, (5.1)

where Ω is the correlation matrix and Ξ is a diagonal matrix containing the marginal standard deviations σi of
the λt shocks. This decomposition implies σi := Ξi,i =

√
Σi,i and Ωi,j = Σi,j

σiσj
for i, j ∈ {1, 2, 3}.

Prior (on gold denominated yield curve): Assumptions 3 and 6 give rise to a flexible model of the gold
denominated yield curve process that is pinned down by a small set of hyper-parameters. We specify a prior
on τ and the initial (time 0) β vector that effectively determines an “average yield curve” for the whole sample
period. We use log-normal prior for τ and independent Gaussian priors for the three entries of the initial β
vector that implies the prior distribution for the initial yield curve shown in the left panel of Figure 3. Our
prior imposes a flat “average yield curve”, i.e., for all maturity the prior mean is 10% with standard deviation
of around 10%.

While the prior distribution tends to concentrate around this yield curve in the sense that the prior mean of
y

(j)
t is independent of t ∀j ≥ 0, the random walk specification of βt implies that the prior variance grows linearly
with time. Consequently, while the “average yield curve” influences our posterior distribution in the early part
of the sample, it is much less influential later. The right panel of Figure 3 illustrates how “prior coverage bands”
for the 10-year yield grow over time. How much our prior for β0 affects the posterior distribution for later
periods depends mainly on our prior on Σ. We use weakly informative priors for components of Σ:

• For the standard deviations we use a common exponential prior (independent across components) with
the rate parameter tuned so that a priori the probability that σi > 1 is less than 5%. The mean is 1/3.

17See Barnard et al. (2000).
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Figure 3: Implied prior distribution of the initial yield curve and the 10-year zero-coupon yield.

The solid grey lines depict the mean, dotted lines depict the 25% and 75% percentiles of the prior distribution. Shaded areas
represent interquantile ranges so that dark areas are indicative of concentrated prior probability.

• For the correlation matrix Ω we use the LKJ prior with a concentration parameter η = 5, which is a
unimodal but fairly vague distribution over the space of correlation matrices. For η values larger than 1,
the LKJ density increasingly concentrates mass around the unit matrix, i.e., favoring less correlation.18

Model of exchange rates: Approximation of greenback denominated yield curves for the period between
1862 and 1879 requires us to infer a new object from data: the multiplier z(j)

t defined in (4.3) that Assumption
5 models with the use of a state-space model. As we discussed in section 4.3, we allow the long-run mean µt and
persistence At parameters of this state-space model move over time. Similar to βt we assume that they follow
drift-less random walks, but in order to economize on the number of parameters (and to avoid over-fitting the
few greenback denominated bonds we observe) we make the parameter changes infrequent.

Assumption 7. Parameters µt and At follow drift-less random walks with shocks that arrive every ∆ months:

µt =

µt−1 + Σµεµ,t εµ,t ∼ N (0, I2) if t = k∆ for k ∈ N

µt−1 otherwise

vec(At) =

vec(At−1) + ΣAεA,t εA,t ∼ N (0, I4) if t = k∆ for k ∈ N

vec(At−1) otherwise
.

As ∆→∞, the frequency of parameter updates goes to zero, providing a linear state-space model (4.4) with
time-invariant long-run mean µ and persistence A.19 An advantage of this formulation is that while it nests a
first-order vector autoregressive process (VAR), it is more flexible due to the presence of the latent variables xt
that allow for first-order moving-average dynamics. By setting ∆ ≥ 1 to low values, we let the long-run mean
and persistence of vt move over time. This provides a simple way to introduce time-variation in the amount of
information pooling: we divide the period of interest into subperiods of equal length ∆ and assume complete
pooling within subperiods and partial pooling—parameterized by Σµ and ΣA—across subperiods.

18See Lewandowski et al. (2009). The LKJ distribution is defined by p(Ω|η) ∝ det(Ω)η−1. For η = 1, this is a uniform distribution.
19This fixed parameter model has been used by Piazzesi and Schneider (2007) and Szőke (2021) (among others) to estimate

conditional moments of inflation and consumption growth in consumption-based asset pricing models.
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5.2 Bond-specific Pricing Errors

Apart from the obvious difficulties arising from transcribing and time aggregating price quotations from news-
papers, we have other reasons to believe that, in certain periods, particular bonds violate the collection of
subsection 2.4 assumptions that support our asset pricing equations. We address this issue by introducing bond
specific pricing errors, modelled as random variables with Gaussian distribution (in assumption 8) and by using
our statistical model to estimate error distribution parameters jointly with yield curve parameters.

Assumption 8. Each bond has a pricing error with the following stochastic properties: errors on bond i are
independent from errors on other bonds and the distribution of errors on bond i is a time-invariant Gaussian
distribution with mean 0 and standard deviation σ(i)

m .

Introducing these errors enables our statistical model to decrease the influence of peculiar bonds on our yield
estimates. We view the imposition of non-bond specific haircut risk in assumption 2 as our key identification
assumption. If assumption 2 were violated and some bonds had idiosyncratic ξ(i) processes, then we would
expect to see large estimates of σ(i)

m for some of the observable bonds. We use this as a diagnostic tool to inspect
whether we should change the way we treat the cash flows from particular bonds, exclude particular bonds
from the estimation of certain yield curves, or divide bonds into new subgroups according to their common
characteristics and re-estimate a yield curve for each group separately. If yield curve estimates differ across the
subgroups, then we can interpret the difference as the yield premium that arises from the specific characteristic.

Example: Ambiguous denomination. In our first estimation of the gold denominated yield curve, we
included the five-twenties as bonds that definitely paid principals in gold even though their contract left the
denomination ambiguous. Under this assumption, we found that bond specific pricing errors were very high
for bonds traded during the Civil War period. This prompted us to treat the bonds that had ambiguous
denomination separately and look for additional price data.

Example: Potential convenience yields. Idiosyncratic variations in how easily bonds could be used for
transactions would lead to large estimates of σ(i)

m . We believe this occurred during the War of 1812, when the US
issued a collection of short term Treasury notes that were used for payments well after their earliest redemption
date.20 Initially, we included these bonds in the estimation of the gold yield curve but we found large pricing
errors during the War of 1812, so we ended up dropping them in an effort to restrict our sample to non-money
Federal liabilities.

Aside: Time-varying pricing errors. An alternative pricing error specification would assign the same σm,t
to all bonds available in period t. We refer to this as a time-varying pricing error model. Unlike our bond-
specific pricing error model, this specification equalizes influences of different bonds on yield curve estimates—the
likelihood function does not let the yield curve price a subset of bonds well at the cost of large pricing errors for
other bonds. Large σm,t estimates can be interpreted as indicating that our common payment-risk assumption
(Assumption 2) is violated for the corresponding subperiod.

20Bayley (1882) suggests that such notes included the Treasury Notes of 1812, Treasury Notes of 1813, Treasury Notes of March
1814, Treasury Notes of December 1814, and the Small Treasury Notes of 1815
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5.3 A Nonlinear State Space Model of Bond Prices

Using these building blocks, we can write our nonlinear state space model in the following compact forms:

p
(i)
t =

〈
q(β̃t), m(i,g)

t

〉
+ σ(i)

m ε
(i)
t gold bonds

p
(i)
t =

〈
q(β̃t)� z(ζt), m(i,d)

t

〉
+ σ(i)

m ε
(i)
t greenback bonds

βt = βt−1 + Σ 1
2 εβ,t yield curve parameters

ζt see Assumption 7 expectation parameters

with ε
(i)
t ∼ N (0, 1) ∀i,∀t ≥ 1 εβ,t ∼ N (0, I3) , ∀t ≥ 1

where p(i)
t denotes the observed period-t price of bond i in terms of gold. The posterior distribution of this model

is obtained by adding up the Gaussian log-likelihoods associated with the independent shocks and combine them
with priors described in Appendix C. This model has four types of parameters that we need to estimate: (1) yield
curve parameters {βt}1933:12

t=1796:1 and τ , (2) expectation parameters {ζt}1878:12
t=1862:1, (3) measurement errors {σ(i)

m }264
i=1,

and (4) “smoothing parameters” Σ, Σµ, and ΣA.
This model has approximately 7, 500 parameters. We cope with this high-dimensional parameter space by

using Bayesian methods, namely, Hamiltonian Monte Carlo with a “No-U-Turn Sampler” (HMC-NUTS) of
Hoffman and Gelman (2014), along with subsequent developments described in Betancourt (2018). The basic
idea of the method is to use slope information about the log-likelihood to devise an efficient Markov Chain
Monte Carlo sampler. This method can attain a nearly i.i.d. sample from the posterior by proposing moves
to distant points in the parameter space through (an approximately) energy conserving simulated Hamiltonian
dynamic. While it has been used extensively in statistics, economic applications are relatively rare to date.

Computational issues: While Stan might seem an obvious choice for the task at hand—it is a well-developed
software that provides an efficient implementation of the HMC-NUTS sampler—non-trivial features of our data
set make it inconvenient for our purposes. Some of the main technical difficulties we face are: (1) the number of
observed assets change over time, (2) each bond has a payoff stream of varying length, (3) periods without price
observations, (4) the set of bond-specific pricing errors that are relevant at a given period t changes over time in
complicated fashion, (5) we want to estimate exchange rate expectations only for a specific sub-period, etc. To
tackle these difficulties, we code the log posterior function of our model from scratch in Julia (Bezanson et al.,
2017) and feed it into the DynamicHMC.jl package by Papp et al. (2021) which is a robust implementation of the
HMC-NUTS sampler mimicking many aspects of Stan. An important advantage of this package is that it allows
the user to provide the Jacobian of the log-posterior manually. Not having to rely on automatic differentiation
for a model with 7, 500+ parameters cuts running time by an order of magnitude. In most cases, we use the
recommended (default) parameters for the NUTS algorithm.

6 Gold Dollar Yield Curves: 1790-1933

We now describe salient features of our approximated gold denominated yield curves for the gold standard
period from 1790-1933. We start with 10-year yields since the economic history literature often focuses on this
maturity. Because a maturity neighborhood of 10 years is arguably where the best estimates in the literature
reside, studying 10-year yields provides sensible check on our results. We then discuss our approximation for
historical 1-year yields and for spreads between short and long term yields.
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6.1 Yields on 10-Year Zero Coupon Bonds

Figure 4 depicts our estimates of 10-year gold denominated zero-coupon yields along with the “Federal Gov-
ernment Bonds: Selected Market Yields” series of Homer and Sylla (2004). Homer and Sylla (2004) computed
their US long term market yield series as the coupon rate on US federal bonds that have approximately 10 years
to maturity and were trading close to par.
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Figure 4: Long-Term Yield Estimates.

The solid black line depicts the mean of our posterior estimate for the 10-year, gold denominated, zero coupon yield. The dashed
grey line depicts the mean of our posterior estimate for the 10-year, dollar denominated, zero coupon yield. The grey bands
around the posterior mean depict the 95% interquantile range. The dashed green line depicts the ‘Federal Government Bonds:
Selected Market Yields’ series from Table 38 of Homer and Sylla (2004). The light gray intervals depict recessions as dated by
Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals depict wars (from left to right: the
War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, and World War I).

Evidently, our estimates typically follow the Homer and Sylla (2004) series, except that we estimate sub-
stantially higher yields during the War of 1812 and the Civil War. We find it reassuring that our estimate
aligns with Homer and Sylla (2004) during “non-emergency” periods because there are good reasons to think
that their estimates should be a good approximation to the 10 year yield. Their approach calculates an average
yield to maturity for 10 year bonds, which should be similar to the 10 year zero-coupon yield when the yield
curve is relatively flat.21 Except during and after the Civil War, the average duration of outstanding bonds was
close to 10 years and the average market trading price is close to par and Homer and Sylla (2004) have a large
data set.22 For these reasons, we consider the general congruence between our estimated 10-year yields and
‘long-term federal government bond yields’ in Homer and Sylla (2004) as a reassuring check on the plausibility
of our findings.

Our approximating yields are quite volatile during the 1790s when secondary markets in Treasury securities
were thin. Yields fell steadily from January 1791 to March 1792 when a financial panic caused sharp drops in
bond prices and corresponding increases in yields. Ten-year zero-coupon yields remained high for the remainder

21We discuss the relationship between the zero-coupon yield curve and the yield to maturity in appendix B.3.
22Bonds typically traded close to par because the government set coupon rates to ensure an issue price of par.

22



of the decade and spiked at 12.3% in August 1798, one month after the Congress authorized a 15-year loan
paying an 8% coupon to cover increased military spending at the outbreak of the Quasi-War with France. Yields
trended downward thereafter, and by 1803 the US government was able to issue at par a $11.25 million 15-year
loan with a 6% percent coupon to finance the Louisiana Purchase.

An advantage of our approach is that we can approximate 10-year yields not only during “non-emergency”
periods but also during the War of 1812 and Civil War, when prices were volatile and deviated substantially
from par. As reported in figure 4, during the War of 1812, the 10-year zero-coupon yield spiked to over 9
percent. A big source of funds for this war was the Treasury’s issuing of five long-term loans with face values
totaling $66 million. Resistance to the war mainly from Federalists in the Northeast and a failure to replace lost
customs revenue with internal taxes forced the Treasury to sell these bonds at deep discounts. Bayley (1882)
reports that two of these loans were sold at 12% discounts, and a third was sold at a 20% discount. Those
officially-stated discounts understate the true discounts, since for payment the Treasury actually accepted at
face value bank notes whose market values had sunk substantially below par.

The Treasury again had trouble selling new bonds at par during the Civil War, leading to much higher
yields.23 Our 10-year yield estimate reaches a peak of 16% near the end of the Civil War, which is substantially
higher than the Homer and Sylla (2004) series peak of 6% at the start of the war. The following observations
suggest that our estimate of yields during this period is more plausible than those of Homer and Sylla (2004).
Starting in 1862, all US Treasury bonds could be purchased with greenback dollars, including bonds with
coupons and principal payments being denominated in diverse units of account, some in greenbacks, others
in gold dollars. The value of the greenback fluctuated with battlefield and political news, and all Treasury
bond prices deviated substantially from par. For example, during the summer of 1864, when re-election of
President Abraham Lincoln was in doubt, 100 greenback dollars could be purchased for as few as 40 gold
dollars. Consequently, during that time Treasury bonds that promised to pay 6 percent coupons in gold dollars
could be purchased for 40 percent of par, implying long-term yields in excess of 15 percent.

The Homer and Sylla (2004) series depicted in figure 4 is not the long-term US bond series that is commonly
used in the economic history literature. Instead, researchers24 have typically used a ‘composite series’ that
combines the Homer and Sylla (2004) estimates for the period from 1798-1861 with the yield-to-maturity on
the New England Municipal bond for the period 1862-1899 and the yield-to-maturity on corporate bonds for
the period 1900-1940.25 Figure 5 plots this composite series alongside our 10-year yields. Our estimates diverge
post 1861 when the composite series stops using US federal debt prices. We estimate a much higher long-term
yield during the war and a lower long-term yield in the late nineteenth century. Possible sources for these
discrepancies are that federal debt carried a greater default risk during the Civil War and that, after the war,
National Banking Era protocols stimulated demands for federal bonds as reserves against National Bank Notes.

23Homer and Sylla (2004) themselves caution against using their estimates for the Civil War period stating on page 303, “. . . the
tables of bond yields for the years 1863 to 1870 do not provide a reliable picture of long-term interest rates.” This is because there
were no federal bonds trading with a gold price of par and so they are forced to estimate the yield as the gold coupon rate for
bonds trading with a greenback price of par. We can capture greater variation in the yield curve because we use the universe of
US Treasury bonds at monthly frequency whereas Homer and Sylla (2004) use the subset of these bonds that are trading at par.

24For example, Officer and Williamson (2021), Shiller (2015), Jordà et al. (2019), and Hamilton et al. (2016).
25It is not obvious that during the 19th century municipal debt was a safer investment than federal debt. Until the 1934 Gold

Reserve Act, the federal government had never defaulted. In contrast, eight states and one territory defaulted in 1830s and 1840s
and ten states defaulted in 1870s and 1880s. These state defaults are discussed in McGrane (1935) and English (1996).
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Figure 5: Alternative Long-Term Yield Estimates.

The solid black line depicts the mean of our posterior estimate for the 10-year, gold denominated, zero coupon yield. The dashed
grey line depicts the mean of our posterior estimate for the 10-year, dollar denominated, zero coupon yield. The grey bands around
the posterior mean depict the 95% interquantile range. The green line (bold and dotted) depicts the ‘US Government Bond Yield’
series from Homer and Sylla (2004). The orange line (bold and dotted) depicts the New England Municipal Bond Yield reported
by Homer and Sylla (2004). The blue line depicts the Corporate Bond Yield reported by Homer and Sylla (2004). The bold
green-orange-blue line depicts the ‘composite’ bond series used by Officer and Williamson (2021). The light gray intervals depict
recessions as dated by Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals depict wars
(from left to right: the War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, and World War I).

6.2 Short Term Yields

Figure 6 depicts our estimates for 1-year gold denominated zero-coupon yields alongside a short term yield series
used by Officer and Williamson (2021) and Jordà et al. (2019).26 We have more difficulty estimating the 1-year
yields than the 10-year yields because some periods have very few price observations for bonds that are close
to maturity. This is reflected in sizes of 95% interquantile ranges for 1-year zero-coupon yields in figure 6. We
are most concerned about the period 1790-1815 when our only price observations are for the consol bonds that
Alexander Hamilton issued to refinance the Revolutionary War debts.27 By contract, the Hamilton consols had
no maturity dates. Because the Federal government ended up repurchasing and retiring all of these bonds, our
perfect foresight assumption means that we treat them as finite maturity bonds.28 This allows us to estimate a
yield curve, but we are faced with two problems: investors may not have anticipated that the bonds would be
repurchased and when, and “times-to-repurchase” were typically greater than 10 years, providing us with little
information about the short end of the yield curve. For these reasons, we drop data from 1790-95 and treat the

26The figure depicts the series labeled as “Surplus Funds (Contemporary Series).” The Series involves the short-term lending
or borrowing of surplus funds, that is, funds that are considered excess by the lending institution and are required for immediate
temporary use by the borrowing entity.

27Bayley (1882) calls these bonds: The Six Percent Stock of 1790, The Deferred Six Percent Stock of 1790, and The Three
Percent Stock of 1790.

28The time to maturity in figure 2 shows the time until the bonds were bought back by the government. The Act authorizing the
issuance of the 1790 Stocks provided for a committee comprised of the president of the Senate, Chief Justice, Secretary of State,
Secretary of the Treasury, and Attorney General to use surplus revenue to repurchase these stocks at market prices, if not exceeding
par. Between 1791 and 1824, nearly all of the outstanding Six Percent and Deferred Six Percent Stocks were repurchased. By 1832,
nearly all of the outstanding Three Percent Stock was repurchased. See Bayley (1882, pages 33, 110).
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short yield curve during 1790-1815 with caution.
Our short term yield series substantially departs from popular alternative series, especially during the Civil

War when we estimate substantially higher yields, peaking at approximately 44% in July 1864. Anecdotal
evidence indicates that Union short-term debt paid very high yields during the Civil War. For example, Homer
and Sylla (2004, page 302) report that in 1860 the Treasury had issued one-year notes at rates of 10-12% and
had rejected bids ranging from 15-36%. One-year yields are negative in the early 1880s and close to zero in
the early 1890s. What parts of our data most influence our inferences about these negative yields? It is that
these negative yields help price both the Four Percent Loan of 1907 and the Four and One-Half Percent Loan
of 1891.29 Economic events that may or may not be sources of these low gold yields during the early 1880s are
that financial markets were highly volatile, that the US government was using surpluses to repurchase bonds,
and that the US had just returned the gold standard in January 1879 (see Noyes, 1909, pp. 79-80).
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Figure 6: Short-Term Yields.

The solid black line depicts the mean of our posterior estimate for the 1-year, gold denominated, zero coupon yield. The dashed
grey line depicts the mean of our posterior estimate for the 10-year, dollar denominated, zero coupon yield. The grey bands
around the posterior mean depict the 95% interquantile range. The green dotted line depicts the US short term yield series
(surplus funds, contemporary) used by Officer and Williamson (2021) and Jordà et al. (2019). The light gray intervals depict
recessions as dated by Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals depict wars
(from left to right: the War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, and World War I).

6.3 Term Spreads

Figure 7 depicts the yield on 5-year government bonds minus the yield on 1-year government bonds. We refer
to this as a term spread. A positive term spread indicates an upward sloping yield curve (i.e., longer maturity
bonds have higher rates), while a negative term spread indicates an inverted yield curve (i.e., shorter maturity

29These are the names used in Bayley (1882). We initially imposed non-negativity constraints in the estimate of the yield curve.
This led to small pricing errors for the Four Percent Loan of 1907 but large pricing errors for the Four and One-Half Percent Loan
of 1891 in the early years of the 1880s. Relaxing the non-negativity constraint significantly reduced the pricing errors on the Four
Percent Loan of 1907 without increasing other errors. We take this as suggestive statistical evidence that the yield curve went
negative in the early 1880s, but further investigation is required.
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bonds have higher rates). Yield curves were typically upward sloping throughout the nineteenth century, with
notable inversions during the War of 1812, the early 1830s, the Mexican-American War, the Civil War, and in
the late 1890s.

A large literature has used yields to help predict real GDP growth.30 Our yield curve estimates open the
way to extend such work back into the nineteenth century. As a preliminary step, our table 1 below emulates
table 2 from Ang et al. (2006). It reports the coefficient β(j)

k and R2 for the regression:

gt+k = α
(j)
k + β

(j)
k

(
y

(10)
t − y(j)

t

)
+ ε

(j)
t+k,k

where gt+k is the annual percentage growth of real GDP over the next k years and y(j)
t denotes the annualized

j-year zero coupon yield for j ∈ {1, 5}. Notice that an upward sloping yield curve appears to be positively
correlated with future economic growth during the 19th century even though no central bank existed to engage
in “active” monetary policy.31 In table 2 in appendix E, we report the coefficients from the regression of the
change in the spread on GDP growth and find additional suggestive evidence that nineteenth century spreads
have some predictive ability.
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Figure 7: 5 Year – 1 Year Yield Spread

The solid blue line depicts the yield on 5-year, gold denominated, zero coupon US government bonds minus the yield on 1-year,
gold denominated, zero coupon US government bonds. The pale blue bands around the posterior mean depict the 95%
interquantile range. The purple line depicts the same yield spread for dollar denominated bonds (after the US leaves the gold
standard). The light gray intervals depict recessions as dated by Davis (2006) for the 1796-1914 period and NBER recessions
thereafter. The dark gray intervals depict NBER recessions. The light red intervals depict wars (from left to right: the War of
1812, the Mexican-American War, the Civil War, the Spanish-American War, and World War I).

30See Stock and Watson (2003) for a critical literature review.
31However, from 1897 until 1913, Republican Secretaries of the Treasury more and more violated the letter of the 1844 Independent

Treasury Act by de facto conducting open market operations intended to lean against the wind.
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1797-1860 1866-1933 1950-2000

Term spread maturity

Horizon 10y - 1y 10y - 5y 10y - 1y 10y - 5y 10y - 1y 10y - 5y

k-years β1
k R2 β5

k R2 β1
k R2 β5

k R2 β1
k R2 β5

k R2

1-year 0.29 0.028 0.95 0.042 0.07 0.000 0.43 0.002 1.28 0.230 3.54 0.159

(0.25) (0.68) (0.28) (0.69) (0.46) (1.66)

3-year -0.32 0.006 -0.01 0.000 0.27 0.002 1.35 0.006 1.56 0.103 2.71 0.028

(0.49) (1.30) (0.69) (1.84) (0.72) (1.13)

Table 1: Forecasts of real GDP growth from term spreads
The table reports the coefficient β(j)

k
and R2 for the regression gt+k = α

(j)
k

+β(j)
k

(
y

(10)
t − y(j)

t

)
+ε(j)

t+k,k where gt+k is the annual

percentage growth of real GDP over the next k years and y(j)
t denotes the annualized j-year zero coupon yield. We annualize the

yields by taking the arithmetic average for each year. Newey and West heteroskedasticity- and autocorrelation-consistent standard
errors with lag order one in parentheses. ∗∗∗ 1%, ∗∗ 5%, and ∗ 10% significance.

6.4 Risk Premia

After the American War for Independence, the Continental Congress owed approximately $40 million in foreign
loans to France, Spain, and Holland and certificates of indebtedness to the American public. The Congress
confronted substantially higher long term yields than the UK even though the UK then had a high debt-to-
GDP ratio. This situation spawned a lively debate in the US about whether and how to service wartime debts.
Ultimately, Alexander Hamilton and others persuaded Congress to repay the foreign debt at face value and
issue new bonds to refinance the domestic certificates. Hamilton claimed that following through on that policy
could eventually acquire for the US a reputation for servicing its debts that would reduce US interest rates to
the lower levels then paid by the UK government.

We use our figure 8 yield curves to quantify whether and when Hamilton’s hopes were fulfilled. The figure
shows yields-to-maturity on gold denominated UK consols, yields-to-maturity on hypothetical gold denominated
US consols that promise the same coupon flows as the UK consols, and the 10-year gold denominated, zero
coupon yields on US treasuries.32 We plot a yield-to-maturity on gold denominated UK consols because almost
all UK government bonds were consols, so that is the only UK yield that can be reliably estimated. Notice that
the long-term yield on US government debt exhibits a downward trend, falling from close to 8% at the beginning
of the nineteenth century to around 2% at the end of the century. Second, notice that the US hypothetical
consol was persistently higher than the UK long-term yield until the 1880s when the two series converge. In this
sense, despite the Federal government’s having serviced War of Independence IOUs, admittedly with substantial
haircuts to domestic creditors, and having completely retired all debt by the mid 1830s, it wasn’t until the late
nineteenth century that Hamilton’s hopes were realized. Finally, notice that the US 10-year zero does not
necessarily align with the yield-to-maturity on the hypothetical US consol. The difference arises because the

32The UK consol yield is the series “Spliced consol yield 1753-2015, corrected for Goschen’s conversion issues” from Thomas and
Dimsdale (2017). The hypothetical, gold denominated US consols promise the same annuity coupon payments as those used in the
UK consol yield series

27



yield-to-maturity is not a particular zero-coupon yield but rather the average of the zero coupon yields at
different maturities and so, unlike the 10-year yield, the yield-to-maturity incorporates both the short and long
ends of the yield curve.33 Since the yield-to-maturity on the hypothetical gold denominated US consols is the
natural comparison to the UK yield to maturity and calculating the hypothetical yield-to-maturity requires the
full yield curve, this exercise illustates the importance of estimating the full yield curve when attempting to
compare UK and US funding costs.
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Figure 8: US and UK Long Term Yields.

The solid black line depicts the mean of our posterior estimate for the yield-to-maturity on hypothetical gold denominated US
consols that promise the same coupon flows as the UK consols. The grey bands around the posterior mean depict the 95%
interquantile range. The solid green line depicts the mean of our posterior estimate for the 10-year, gold denominated, zero
coupon yield. The pale green bands around the posterior mean depict the 95% interquantile range. The green line depicts the UK
long-term yield (implied by the 3% consol price) from Thomas and Dimsdale (2017). The light gray intervals depict recessions as
dated by Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals depict wars (from left to
right: the War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, and World War I).

The difference between the yield-to-maturity on the UK consol and the hypothetical US consols probably
reflects different haircut risks. UK debt was considered a ‘safe-asset’ during the nineteenth century, whereas
many military and political incidents probably induced investors to regard nineteenth century US debt to be
risky. We can make this claim more precise by using our pricing formulas. The yield-to-maturity on an annuity
with gold coupon payments m and price pt is the rate ȳt that solves:

pt =
∞∑
j=1

exp (−ȳt)j m̄ (6.1)

Let q̄t := exp (−ȳt). In lemma 2 in appendix B.3, we show that combining equation (6.1) with equation (4.5)
33We derive the connection formally in appendix B.3.
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gives the following expression for the yield-to-maturity:

q̄t = 1− 1∑∞
j=0 q

(j,g)
t

Let lowercase letters represent US prices and yields and let capital letters represent UK prices and yields. Then
from corollary 1 in appendix B.3, we have that the difference between the US and UK consol yields is:

ȳt − Ȳt ≈

∑∞
j=0

(
q

(j,g)
t −Q(j,g)

t

)
(∑∞

j=0 q
(j,g)
t

)(∑∞
j=0Q

(j,g)
t

) (6.2)

where ȳt and q
(j,g)
t are yields-to-maturity and zero-coupon prices in the US and Ȳt and Q

(j,g)
t are yield-to-

maturity and zero-coupon prices in the UK. Imposing that haircut risk is zero in the UK implies that the spread
between US and UK zero-coupon bond prices is

q
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t −Q(j,g)
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)

If gold inflation expectations were similar in the US and UK during the gold standard34, then we can interpret
the difference between the US and UK consol yields in figure 8 as reflecting the risk premium on US Federal
debt. Under this interpretation, figure 8 suggests that US federal debt traded with a risk premium until the late
nineteenth century when it became an alternative ‘safe-asset’ to UK consols. Evaporation of those risk-premia
signals a realignment of global finance that ultimately led US government debt to replace UK debt as a global
‘safe-asset’ during and after the years of the Bretton Woods arrangement.

Estimating haircut risk: In principle, we could attempt to use UK yields to estimate haircut risk. However,
we face the major challenge that we only observe the prices of UK consols. This means that, to make progress,
we would need to impose a one-dimensional functional parametrization of Et[ξt+j ]. Here is one way to do this.
Suppose that government haircuts are governed by a two-state Markov Chain with default as an absorbing
state. Let pt be bondholders’ perceived probability of default in period t and assume that they use the two-state
Markov Chain to forecast future cash-flows. For simplicity, suppose that upon default, government bonds pay
0. These assumptions imply Et[ξt+j ] = (1− pt)j . In addition, suppose that bondholders’ are risk-neutral in the
sense that covt

(
St+j

St
, ξ

(i)
t+j

)
= 0. In this special case, we have:

q
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which we could combine with equation (6.2) to estimate a haircut probability pt. Of course, this particular
example imposes strong assumptions and ignores the possibility of varying convenience yields on US and UK
federal debt. We leave the complicated task of resolving the estimation of haircut risk to future work.

34We have not estimated inflation expectations during the nineteenth century in the UK, but this seems like a reasonable prior
given that both countries were on the gold standard.
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7 Greenback Dollar Yield Curves And Exchange Rate Expectations:
1862-1878

Earlier sections have focused on the gold denominated yield curve, which we think of as our “baseline” for the
gold standard period of 1790-1933. As discussed in sections 4 and 5, we also estimate a “conversion multiplier”
that allows us to convert the gold denominated yield curve into a greenback denominated yield curve during
this period. The estimated greenback and gold 10-year yields are shown together in figure 9. The greenback
denominated yield is systematically below the gold denominated yield. This is because investors expected a
return to the gold standard post Civil War and so expected greenbacks to appreciate in value. This meant that
they were willing to accept a low greenback yield.35
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Figure 9: Yield Curves. The black line is the 10-year gold denominated zero-coupon yield curve. The green
line is the 10-year greenback denominated zero-coupon yield curve. The light gray intervals depict recessions as
dated by Davis (2006).

Our approach allows us to infer how investors’ expectations about the greenback-dollar exchange rate evolved
during and after the Civil War. Figure 10 shows our estimate for the expected Gold/Greenback exchange rate
10 years into the future at each date. As can be seen, 10 year exchange rate expectations moved very little
during the Civil War. In this sense, there was a very strong “nominal anchor” throughout the Civil War.

We elaborate on this point in figure 11, which shows expected gold/green back exchange rate paths at different
dates during the Civil War. On each plot, a black line shows the path of the gold/greenback exchange rate,
Pt, up until a particular date, the gray line shows the continuation of the realized gold/greenback exchange
rate after that date, and the orange line shows our estimates of investors’ expectations about paths of the

35Roll (1972) makes a similar point when he discusses the greenback yield through this period.
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gold/greenback exchange. Evidently, throughout the War (1861-65), investors expected a rapid return to the
gold standard in the post war period. This was true even during the large drops in the value of the greenback
that occurred in 1863 and 1864 in response to bad news from the war front. Thus, even in the face of very
high greenback inflation during the War, expectations of a rapid resumption of greenback convertibility at par
seemed to prevail. However, after the War, bond holders became less optimistic about a rapid return to gold.
It is enlightening to stare at the post-war panels with a copy of (Dewey, 1922, p. 340-345) in hand and to seek
explanations for this pattern there in terms of fiscal-monetary decisions made by the Congress and Treasury.
Dewey describes how after mid 1866 Congress postponed measures designed to return to the gold standard.
Our estimates indicate that by the mid 1870s investors thought that discrepancies between gold and greenback
prices would persist indefinitely.
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Figure 10: Long Term Exchange Rate Expectations. The black line shows the path of the gold/greenback
exchange rate, Pt. The orange line shows the median of our posterior estimate for the expected Gold/Greenback
exchange rate 10 years into the future at each date. The orange shaded area is the 95% interquantile range for
our estimate.
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Figure 11: Expected Gold/Greenback Exchange Rate. On each plot, the black line shows the path of the
gold/greenback exchange rate, Pt, up until a particular date. The gray line shows the continuation of the realized
gold/greenback exchange rate after highlighted date. The dashed orange line shows our model’s estimate of
investors’ expectations about the path of the gold/greenback exchange. The orange shaded area is the 95%
interquantile range.
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8 Real Yield Curves And War Finance: 1790-2020

During the late 18th and early 19th centuries, the UK serviced high debt-GDP ratios at low interest rates. US
statesmen disagreed about whether the US could and should foster a similar outcome. Alexander Hamilton
advocated building a reputation for repayment so that the US could on occasions run large deficits and build
infrastructure. Thomas Jefferson advocated low Federal taxes and spending and a limited Federal borrowing
capacity, partly because that would prevent the US from supporting a standing army and becoming entangled in
foreign adventures. To quantify how this dispute played out, we need to study the real financing costs that the
US Federal government faced when issuing bonds throughout its history. We address this by bringing together
our nominal yield curve estimates for 1790-1947 (both gold and greenback denominated), combining them with
existing nominal yield curve estimates from 1947-2020, and then constructing nominal and real yield curve
series for 1790-2020.

To construct an ex ante real yield curve series, we must estimate inflation expectations at various horizons.
Define currency n inflation between period t and t+ j as Π(j,n)

t := e
(n)
t /e

(n)
t+j and let π(j,n)

t denote the logarithm
of Π(j,n)

t . We use Assumption 4 to obtain a “risk-neutral” approximation of the ex-ante real yield:

r
(j,n)
t := y

(j,n)
t + 1

j
logEt

[
exp

(
− π(j,n)

t

)]
(8.1)

Researchers have developed sophisticated techniques for estimating inflation expectations (the second term)
that incorporate macroeconomic data and theory. In principle, we could implement similar tools for the post
WW1 period. However, extending these techniques back into the nineteenth century is non-trivial because there
is limited reliable macroeconomic data available. For this paper, we apply our “macro-theory-lite” approach to
estimating inflation expectations because we can apply it consistently throughout our entire sample. Appendix
D describes a flexible model of inflation expectations—very much in the spirit of the model in Assumptions 5
and 7—that we use to estimate the second term in (8.1).

The results are shown in figure 12, which plots our estimates of 5-year zero-coupon real yields on US
treasuries, our estimates of 5-year zero-coupon nominal yields on US Treasuries, US surpluses as percentages
of GDP, our estimates of 5-year inflation expectations, and the rolling realized 5-year inflation. As in previous
plots, gray shaded areas are recessions and red shaded areas are wars. Evidently, big deficits during the War of
1812 and the Civil War coincided with high real yields. This is in stark contrast to the US experience during
the 20th century when it was able to finance large deficits during WW1, WW2, and the Depression at low
real yields. The figure suggests both Hamilton and Jefferson were both prophetic. Hamilton’s hopes of low
interest rate deficit financing were eventually realized in the early 20th century. However, as Jefferson feared,
achievement of a low financing cost regime coincided with the US introducing a big standing army and frequent
participation in foreign wars.

Figure 12 sheds new light on an economic history literature that, starting with Evans (1985, 1987), has
concluded that during the nineteenth century there was not a strong association between interest costs and
deficits. To conclude that, previous papers used the composite series in figures 5 and 6 (the green, orange
and blue lines). Our analysis indicates that that series substantially underestimates increases in yields on US
Federal debt during episodes of large 19th century government deficits. One way to reconcile our analysis with
this literature would be to argue that yields on US municipal and corporate bonds were not highly correlated
with surpluses even though yields on US Federal bonds were. We leave a detailed analysis of nineteenth century
municipal and corporate yields for future work.

Figure 12 also sheds light on the evolution of inflation expectations. For most of the nineteenth century,
gold inflation expectations were anchored around zero, which kept real and gold denominated yields close
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Figure 12: US Budget Surpluses, Real Bond Yields, and Inflation Expectations.

Top plot: The solid black line depicts the mean of our posterior estimate for the 5-year, gold denominated, zero coupon yield. The
grey bands around the posterior mean depict the 95% interquantile range. The solid green line depicts the mean of our posterior
estimate for the 5-year gold denominated yield. The dashed green line depicts the mean of our posterior estimate for the 5-year
greenback denominated yield. The solid red line shows US surplus as a percentage of GDP. The light gray intervals depict
recessions as dated by Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals depict major
wars (from left to right: the War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, World War I,
and World War II). Bottom plot: The solid blue line depicts the mean of our posterior estimate for 5-year inflation expectations
(expressed as an annualized %). The dashed purple line depicts realized inflation for the 5-year period corresponding to the
inflation expectations (expressed as an annualized %). From 1790-1933, both series refer gold inflation. From 1934-2020, both
series refer to greenback inflation. The pale blue bands around the posterior mean for 5-year inflation expectations depict the 95%
interquantile range.

together. This was true even during the Civil War when gold coins and greenback dollars coexisted and there
was significant greenback inflation. The story starts to change in the 1890s when gold inflation expectations
became positive. A possible source of the change was the strong support from elements of both major political
parties for returning to a bimetallic gold-silver standard at a mint price ratio of 16-1 when when the market
price ratio had become much higher. Prospects of a return to bimetallism at an exchange rate that overvalued
silver naturally made investors fear inflation. See Friedman (1990a), Friedman (1990b), and Velde and Weber
(2000). Inflation expectations spiked to over 6% per annum during World War I but stabilized at around 1%
per annum soon afterwards. That pattern may reflect that the US was one of the few Western countries to
not formally abandon the gold standard during the war. The next major change came in 1933 when President
Roosevelt signed the Gold Reserve Act that, at least for US citizens, effectively took the US off the gold
standard. Inflation expectations immediately increase by approximately 4 percentage points and then remain
positive through throughout the rest of the 20th century, before ultimately settling down to around 2% per
annum in recent years. It is worthwhile comparing our estimates here with what Goodfriend and King (2005)
describe as Paul Volcker’s incredible disinflation.

To highlight and compare how different US wars were financed, we overlay time series for the Civil War
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Figure 13: Financing the Civil War and World War I.

Top plot: The solid black lines and gray bands refer to time series from 1860-1884. The dashed green lines and light green bands
refer to time series from 1916-1933.

and World War I in figure 13. The black lines depict surpluses, yields, inflation expectations, and term spreads
for the Civil War while green lines depict the same variables for World War I. The bottom axes refer to Civil
War variables while the top axes refer to World War I variables. The first two subplots emphasize that, even
though the US ran a larger deficit during World War I, the 5-year real yield remained negative until around
1920 rather than increasing dramatically like it did during the Civil War. However, note that the real yield
steadily increased after World War I and reverted to pre-war levels more slowly than following the Civil War.
An interpretation is that monetary arrangements during the 1920s delayed the fall in yields until the 1930s
Depression. The bottom right subplot shows that the spread between the real 5-year yield and the real 1-year
yield moved in opposite directions during the two wars. During the Civil War, the real yield curve inverted
making longer term financing relatively cheap while during World War I the spread increased and longer term
financing became relatively expensive.

9 Concluding Remarks

Our research here is partly a “proof of concept”: we have used Bayesian Monte Carlo methods to approximate
posterior probabilities of a profligately parameterized but theoretically highly restricted statistical model. The
model blends a tailored asset price asset pricing theory that bundles stochastic discount factors with haircut and
exchange rate risks together with a statistical model of how quickly yield curves move over time. We have used
the model’s pricing errors to diagnose measurement errors and conceptual problems involving units of accounts.
Here we have shown only the tip of an iceberg. Offline, we have used the model to compose “bond biographies”
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of some classic bonds beloved of US financial historians, for example, the Stocks of the 1790s, the Civil War-era
5-20s, and World War I Liberty and Victory Loans.

The quality and plausibility of our approximate yield curves convince us that our approach could be used
in other settings where governments have issued bonds in different currencies. One example might be the 1997
Asian financial crisis where many South East Asian governments and banks issued bonds both in local currencies
and in US dollars. Our estimates also might qualify as plausible inputs to subsequent research that, in the spirit
of “factor models” of stochastic discount factors, would use related macro series to refine understandings of
forces that drive yield curves and forecasts of important macro time series.
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A Additional Data Description

A.1 Construction of Recession bands

For the 1796-1914 period we use recession dates from Davis (2006). These are derived solely from the Davis
(2004) annual industrial production index. The Davis index incorporates 43 annual series in the manufacturing
and mining industries in a manner similar to the Federal Reserve Board’s present-day industrial production
index. For this reason, we regard it as an improvement over earlier more qualitative approaches of dating pre-
World War I business cycles. Since the data used to date peaks and troughs is annual, the methodology is quite
simple: A year immediately preceding an absolute decline in the aggregate level of Davis’s industrial production
index defines a peak, and the last consecutive decline following a peak defines a trough (Davis, 2006). For the
1915-present period we use recession dates from the NBER.

B Additional Theory

B.1 Supplementary Proofs on Currency Risk Premia

Proof of Lemma 1. The dollar n price can expressed as36:
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and so the difference between a dollar n yield and the risk free real yield is approximately37:
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B.2 Zero-Coupon Bonds Having Ambiguous Denominations

In section 4, we only considered bonds whose payoff currency denominations are certain and whose only risk
involves possible haircuts. We now consider a zero-coupon bond that promises to paym(i,a)

t dollars of ambiguous
denomination (denoted by index a). For these bonds, pricing formulas are more complicated. Let γ(i)

t+j denote
the probability that m(i,a)

t+j is actually made in gold dollars at time t+ j and that 1−γ(i)
t+j is the probability that

payment is made in greenback dollars. The price of gold denominated bonds with ambiguous payment currency
is:
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rewrite this equation as:

p
(i,j,a)
t = Et

[(
St+j
St

)(
γ

(i)
t+j

e
(g)
t+j

e
(g)
t

+ (1− γ(i)
t+j)

e
(d)
t+j

e
(g)
t

)
ξt+j

]
m

(i,a)
t+j

= Et

[(
St+j
St

)(
e

(g)
t+j

e
(g)
t

)(
γ

(i)
t+j + (1− γ(i)

t+j)Pt+j
)
ξt+j

]
m

(i,a)
t+j

37Using the approximation that log(1 + x) ≈ x

42



and define the price:
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Assumption 9. Conditional on Pt+j , denomination risk, γ(i)
t+j , is independent of all other variables. γ(i)
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We keep our model parsimonious by parameterizing γt+j as a function of Pt+j . To attain comparability with
earlier notation, we define the conversion multiple w(j)

t by:
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so that we can write the price of ambiguously denominated bonds as:
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Remark: Risk Decomposition: The previous section assumed that we can decompose default risk on a bond
denominated in currency n into orthogonal haircut and currency n inflation risks:
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A natural concern with this approach is that the government could have imposed haircuts by paying greenback
dollars for what it had promised would be gold dollars. That would make haircut risk and currency inflation n
risk be correlated. Introducing γ is one way of relaxing assumption 4 because with γ in play: (i) default risk
can be decomposed into haircut, denomination, and price level risks, and (ii) dependence between denomination
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and price level risks is allowed. This means that default risk is now:
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Here we have partitioned haircut risk into a denomination risk component that can be correlated with currency
prices and a second component that is independent of currency prices. Currency n inflation risk is the term
e

(n)
t+j/e

(n)
t , which is the factor by which the goods price of currency n changes.

B.3 Connection Between Yields on Finite-Horizon Zero-Coupon Bonds and Yield-
To-Maturity

Some analysts have expressed historical long-term interest rates as yields-to-maturity rather than zero-coupon
yields. In this appendix, we discuss the connection between the different types of yields. A yield-to-maturity
(a.k.a. an internal rate of return) is defined as a fixed discount rate, ȳ(i,n), that equates the currency n bond
price to the present discounted value of its promised currency n payments. Thus, the dollar n yield-to-maturity
on bond i with payments in currency n and maturity J (i) is the rate ȳ(i,n)

t that solves:
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Lemma 2. Consider a bond with J i = ∞ and m̄
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t+j = m̄(n) (i.e. a fixed coupon annuity in currency n).

Denote the yield-to-maturity on such a bond by ȳ(n)
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Proof. From equation (B.1), we have that the price of the fixed coupon annuity is:
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where q̄(0,n)
t = 1. Equating the expressions gives that:
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and rearranging gives the desired result.

Corollary 1. Let lowercase letters represent US prices and yields and let capital letters represent UK prices
and yields. Then the difference between the US and UK consol yields is
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Equation (B.1) indicates that the yield-to-maturity on a coupon-bearing bond is some kind of weighted
average of zero-coupon yields, with cash-flow payments serving as weights. For the case of an annuity, the
average is unweighted and reduces to equation (B.2). Because a principal payment is typically substantially
larger than the coupon payments, the maturity-related zero-coupon yield gets the largest weight in the average.
As a result, a yield-to-maturity on a J-maturity bond can approximate a J-period zero-coupon yield, although
the quality of approximation depends on details of a bond’s promised payment stream. The only exact equality
is that a yield-to-maturity on a j-period zero-coupon bond coincides with the j-period zero-coupon yield, y(j,n)

t .
The Congress and the Treasury often aimed to set coupon rates on new bonds so that initially they would

sell at par. That outcome would make their yields-to-maturities equal their coupon rates. As we will see below,
changes in market conditions frustrated this objective during important episodes in US history. Thus, at times
of financial distress during the War of 1812 and the Civil War, Treasury debt sold at deep discounts; and during
disagreements between the President and the Congress, like those in the 1890s, the Treasury issued bonds with
coupon rates exceeding current yields, so that bonds sold at a premium.38

In remarks at a 2010 Minneapolis Fed conference, Professor V.V. Chari offered an “accounting tail wags the
38In 1895, after a run drained 40% of the Treasury’s Gold Reserve Fund, President Grover Cleveland sought to issue debt to

purchase the gold needed to replenish these reserves. But proponents of bimetallism in Congress blocked new borrowing. Accepting
advice from J.P. Morgan’s lawyers, the Cleveland Administration bypassed Congress and used some Civil War-era legislation to
issue 30-year bonds bearing 4 percent coupons, at a time when the 10-year zero-coupon yield was below 3 percent. Controversy
surrounding the issuance of these bonds helped inspire William Jennings Bryan’s “Cross of Gold” Speech at the 1896 Democratic
Convention. See Chernow (2001, ch5) for details.
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dog” explanation of why Congresses often wanted only to market new bonds that would sell “at par”.39 Chari’s
explanation was that Congresses viewed themselves as stuck with Alexander Hamilton’s peculiar accounting
rules that told them to measure total government debt by simply adding up undiscounted par values of all
outstanding debts, ignoring coupon values. That accounting system could provide good approximations to the
value of debt only if bonds traded at or near par values.

C Priors

Gold denominated yield curve: We use log-normal prior for τ and independent Gaussian priors for the
three entries of the initial β vector:

β0,0 ∼ N (10, 10), β1,0 ∼ N (10, 10), β2,0 ∼ N (10, 10), log τ ∼ N (60, 60)

We use weakly informative priors for components of Σ:

• For the standard deviations we use a common exponential prior (independent across components) with
the rate parameter tuned so that a priori the probability that σi > 1 is less than 5%. The mean is 1/3.

• For the correlation matrix Ω we use the LKJ prior with a concentration parameter η = 5, which is a
unimodal but fairly vague distribution over the space of correlation matrices. For η values larger than 1,
the LKJ density increasingly concentrates mass around the unit matrix, i.e., favoring less correlation.

Pricing errors: We use common exponential priors on the standard deviation of pricing errors, σ(i)
m , with the

rate parameter tuned so that a priori the probability that σ(i)
m > 20 is lower than 5%. The prior mean is 10.

Model of exchange rates: We use independent Gaussian priors for all components of ζ0 except for F .

• For entries of the initial long-run mean vector µ0 and matrix K, we set the mean of the Gaussian prior
to the point estimates coming from estimating a time-invariant version of model (4.4) using data for
1862− 1863. We set the standard deviations so that the prior allows for reasonably large deviations from
these point estimates.40 This procedure guarantees that the prior distribution concentrates on sensible
parameter values, but because the estimation is based on a short stretch of data, the location of the
parameters is only weakly restricted.

• For entries of the initial persistence matrix A0 we set a prior that assumes mildly positive auto-correlations
for both entries of xt while being agnostic about the cross-terms.41 Observe that we do not explicitly
restrict At to be a stable matrix, but use a prior that pushes the initial A0 matrix in the direction of the
“stable region”.

• Parameter matrix F is lower-triangular that we parameterize as follows. First, similar to (5.1), we de-
compose the covariance matrix FF ′ into correlation coefficients and marginal variances FF ′ = ΞFΩFΞF ,
where ΞF is a diagonal matrix containing the marginal standard deviations and ΩF is the corresponding
correlation matrix. Matrix F can be written as F = ΞFLΩF , where LΩF is the lower-triangular Cholesky

39Chari was responding to the content of a draft version of Hall and Sargent (2011), which documented differences between the
US government accounting method and an alternative mark-to-market method.

40In particular, we set µ0[1] ∼ N (1, 1), µ0[2] ∼ N (1.27, 1), and K[1, 1] ∼ N (0.029, 0.05), K[2, 1] ∼ N (−0.041, 0.05), K[1, 2] ∼
N (0.0, 0.05), K[2, 2] ∼ N (0.025, 0.05).

41In particular, we set A0[1, 1] ∼ N (0.9, 0.1), A0[2, 1] ∼ N (0, 1), A0[1, 2] ∼ N (0, 1), A0[2, 2] ∼ N (0.9, 0.1).
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factor of ΩF such that (LΩF )(LΩF )′ = ΩF . For the standard deviations in ΞF we use a common exponen-
tial prior (independent across components) with the rate parameter tuned so that a priori the probability
that σF,i > 0.3 is lower than 5%. The prior mean is 0.1. For the Cholesky factor LΩF we use the LKJ
prior with concentration parameter ηF = 5.

• We assume that Σµ and ΣA are diagonal matrices, i.e., shocks to the components of µt and At are
independent. For their standard deviations we use a common exponential prior (independent across
components) with the rate parameter tuned so that a priori the probability that σi > 0.3 is lower than
5%. The prior mean is 0.1.

D Consistent Estimation of Inflation Expectations

We estimate inflation expectations between 1794-2020 by applying a univariate version of the statistical model
we introduced for exchange rate expectations in section 4.3. The underlying data is our combined monthly
inflation series that we described in section 2.4. During the temporary suspension of gold convertibility (1862-
1879), the General Price Level Index expresses Greenback inflation. We convert this into gold inflation by using
the gold/greenback exchange rate Pt.

Let πt+1 denote the logarithm of monthly inflation between period t and t+ 1. We model this variable with
the following state-space model with (infrequently) changing long-run mean and persistence parameters:

πt+1 = αt + xπt + σπεπ,t+1

xπt+1 = ρtx
π
t + σxεπ,t+1

επ,t+1 ∼ N (0, 1) , ∀t ≥ 0 (D.1)

where xπt is a hidden state with given initial x0. Parameters αt and ρt follow random walks with infrequent
shocks:

αt =

αt−1 + Σαεα,t εα,t ∼ N (0, 1) if t = k∆ for k ∈ N

αt−1 otherwise

ρt =

ρt−1 + Σρερ,t ερ,t ∼ N (0, 1) if t = k∆ for k ∈ N

ρt−1 otherwise
.

Our baseline estimates set ∆ = 12, i.e. the long-run mean and persistence of monthly inflation can change once
every year. Model (D.1) posits that j-period ahead logged inflation,

∑j
i=1 πt+i, is a normal random variable,

implying that j-period ahead gross inflation, Π(j,n)
t , is lognormal. Using the model-implied conditional mean

and variance of
∑j
i=1 πt+i, one can derive an estimate for Et

[
exp

(
− π(j,n)

t

)]
that goes into formula (8.1). We

estimate this model using the same HMC-NUTS sampler that we use for our yield curve model.

Priors: We use independent Gaussian priors for σx and the initial parameters α0 and ρ0:

σx ∼ N (0.01, 0.1), α0 ∼ N (1, 1), ρ0 ∼ N (0.9, 0.1)

For the standard deviations σπ, Σα, and Σρ, we use a common exponential prior with the rate parameter tuned
so that a priori the probability that σπ > 1.5 is lower than 5%. The corresponding prior mean is 0.5.
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E Additional Connections Between Spreads and Growth Rates

Table 2 replicates table 1 but uses the change in the spread rather than the level of the spread.

1797-1860 1866-1933 1950-2000

Term spread maturity

Horizon 10y - 1y 10y - 5y 10y - 1y 10y - 5y 10y - 1y 10y - 5y

k-years β1
k R2 β5

k R2 β1
k R2 β5

k R2 β1
k R2 β5

k R2

1-year 0.66 0.071 1.45 0.054 0.09 0.000 0.11 0.000 1.06 0.128 3.81 0.136

(0.28) (0.75) (0.61) (1.63) (0.32) (1.22)

3-year 1.87 0.109 4.09 0.081 0.24 0.000 1.05 0.001 2.32 0.166 5.99 0.100

(0.72) (1.88) (1.10) (2.91) (0.66) (2.28)

Table 2: Forecasts of real GDP growth from first differenced term spreads
The table reports the coefficient β(j)

k
and R2 for the regression gt+k = α

(j)
k

+ β
(j)
k

((
y

(10)
t − y(j)

t

)
−
(
y

(10)
t−1 − y

(j)
t−1

))
+ ε

(j)
t+k,k

where gt+k is the annual percentage growth of real GDP over the next k years and y
(j)
t denotes the annualized j-year zero

coupon yield. We annualize the yields by taking the arithmetic average for each year. Newey and West heteroskedasticity- and
autocorrelation-consistent standard errors with lag order one in parentheses. ∗∗∗ 1%, ∗∗ 5%, and ∗ 10% significance.
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1775 1785 1795 1805 1815 1825 1835 1845

   Treasury Notes Prior to 1846             

   Exchanged 4.5 % Stock of 1825            

   4.5 % Loan of 1824                       

   Exchanged 4.5 % Stock of 1824            

   4.5 % Loan of 1824                       

   Exchanged 5 % Stock of 1822              

   Five Per Cent. Loan of 1821              

   Six Per Cent. Loan of 1820               

   Five Per Cent. Loan of 1820              

   Five Per Cent. Loan of 1816              

   Treasury Note Stock of 1815              

   Treasury Notes of 1815                   

   Mississippi Stock                        

   Six Per Cent. Loan of 1815               

   Temporary Loan of March, 1815            

   Seven Per Cent. Stock of 1815            

   Temporary Loan of February 1815          

   Small Treasury Notes of 1815             

   Treasury Notes of December, 1814         

   Temporary Loan of 1814                   

   Undesignated Loan of 1814                

   Six Million Loan of 1814                 

   Ten Million Loan of 1814                 

   Treasury Notes of March, 1814            

   Seven and One-Half Million Loan of 1813  

   Treasury Notes of 1813                   

   Sixteen Million Loan of 1813             

   Exchanged Six Per Cent. Stock of 1812    

   Treasury Notes of 1812                   

   Temporary Loan of 1812                   

   Six Per Cent. Loan of 1812               

   Six Per Cent. Loan of 1810               

   Converted Six Per Cent. Stock of 1807    

   Exchanged Six Per Cent. Stock of 1807    

   Louisiana Six Per Cent. Stock            

   Eight Per Cent. Loan of 1800             

   Eight Per Cent. Loan of 1798             

   Temporary Loan of 1798                   

   Navy Six Per Cent. Stock                 

   Six Per Cent. Stock of 1796              

   Temporary Loan from Bank of New York     

   Temporary Loan of March, 1795, A.        

   Temporary Loan of March, 1795, C.        

   Four and One-Half Per Cent. Stock of 1795

   Five and One-Half Per Cent. Stock of 1795

   Temporary Loan of March, 1795, B.        

   Temporary Loan of February, 1795         

   Temporary Loan of December, 1794         

   Temporary Loan from Bank of New York     

   Temporary Loan of June, 1794             

   Holland Loan of 1794                     

   Temporary Loan of March, 1794            

   Temporary Loan of 1793                   

   Holland Loan of 1793                     

   Temporary Loan From Bank of North America

   Temporary Loan of 1792                   

   Subscription Loan of 1791                

   Holland Loan of 1792                     

   Holland Loan of December, 1791           

   Antwerp Loan of 1791                     

   Holland Loan of September, 1791          

   Holland Loan of March, 1791              

   Three Per Cent Stock of 1790             

   Defer Six Per Cent Stock of 1790         

   Six Per Cent Stock of 1790               

   Temporary Loan of 1790                   

   Holland Loan of 1790                     

   Temporary Loan of 1789                   

   Holland Loan of 1788                     

   Holland Loan of 1787                     

   Debt Due Foreign Officers                

   Holland Loan of 1784                     

   French Loan of Six Million Livres        

   Holland Loan of 1782                     

   Temporary Loans From Banks               

   French Loan of Ten Million Livres        

   Domestic Interest in Arrears             

   Certificates of Indebtedness             

   Loan from Spain in 1781                  

   French Loan of Eighteen Million Livres   

   Loan From Farmers-General of France      

   Loan Office Certificates                 

C <= 2

2 < C <= 4

4 < C <= 5

5 < C <= 6

C > 6

Figure 14: Treasury Bonds Issued from 1776 to 1840.

The span of each line corresponds to the period the security was outstanding. The width is proportional to the size of the issue,
and the color denotes the coupon rate.
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1840 1850 1860 1870 1880 1890 1900 1910 1920

   2nd Liberty Loan Converted to 4.25%          
   1st Liberty Loan Converted to 4.25%          
   1st Liberty Loan Converted to 4%             
   4th Liberty Loan                             
   Certificates of Indebtedness (9/24/1917)     
   3rd Liberty Loan                             

   Certificates of Indebtedness (9/24/1917)     
   War Savings and Thrift Stamps                
   2nd Liberty Loan of 1917 (4%)                
   Certificates of Indebtedness (9/24/1917)     

   Certificates of Indebtedness (4/24/1917)     
   Certificates of Indebtedness (4/24/1917)     

   1st Liberty Loan of 1917 (3.5%)              
   Certificates of Indebtedness (4/24/1917)     
   Certificates of Indebtedness (4/24/1917)     
   Certificates of Indebtedness (3/3/1917)      

   One Year Treasury Notes                      
   Conversion Bonds                             
   Postal Savings Bonds (15th Series)           
   Panama Canal Loan (Series 1911)              
   Panama Canal Loan (Series 1908)              

   Certificates of Indebtedness (6/13/1908)     
   Panama Canal Loan (Series 1906)              
   Consols of 1930                                                                      
   Gold Reserve Fund                                                                    

   Ten-Twenty Loan of 1898                                                              
   Loan of 1925                                                                         

   Loan of 1904                                                                         
   Funded Loan of 1891, con't at 2%                                                     

   Treasury Notes of 1890                                                               
   National Bank Notes                                                                  

   Bonds issued to Pacific Railroad                                                     
   Loan of July 12, 1882                                                                

   Funded Loan of 1881 con't 3.5% (Five Percent Loan of 1881)                           
   Funded Loan of 1881 con't 3.5% (Loan of 1863)                                        

   Funded Loan of 1881 con't 3.5% (Loan of July and August 1861)                        
   Refunding Certificates                                                               

   Silver Certificates                                                                  
   Four Percent Loan of 1907                                                            

   Four and One-Half Percent Loan of 1891                                               
   Certificates of Deposit                                                              

   Five Percent Loan of 1881                                                            
   Certificates of Indebtedness of 1870                                                 

   Consols of 1868                                                                      
   Three Percent Certificates                                                           

   Consols of 1867                                                                      
   Consols of 1865                                                                      

   Five-Twenties of March 1864                                                          
   Coin Certificates                                                                    

   Five-Twenties of 1865                                                                
   Navy Pension Fund                                                                    

   Five-Twenties of June 1864                                                           
   Seven-Thirties of 1864 and 1865                                                      

   Ten-Forties of 1864                                                                  
   Compound Interest Notes                                                              

   Loan of 1863                                                                         
   One Year Notes of 1863                                                               
   Two Year Notes of 1863                                                               

   Fractional Currency                                                                  
   Legal Tender Notes                                                                   

   Five-Twenties of 1862                                                                
   Certificates of Indebtedness                                                         

   Temporary Loan                                                                       
   Loan of July and August 1861                                                         

   Seven-Thirties of 1861                                                               
   Old Demand Notes                                                                     

   Oregon War Debt                                                                      
   Treasury Notes of 1861                                                               

   Loan of February 1861                                                                
   Treasury Notes of 1860                                                               

   Loan of 1860                                                                         
   Loan of 1858                                                                         

   Treasury Notes of 1857                                                               
   Texas Debt                                                                           

   Texas Indemnity Stock                                                                
   Loan of 1848                                                                         

   Bounty Land Script                                                                   
   Loan of 1847                                                                         

   Treasury Notes of 1847                                                               
   Loan of 1846                                                                         

   Mexican Indemnity Stock                                                              
   Treasury Notes of 1846                                                               

   Loan of 1843                                                                         
   Loan of 1842                                                                         

   Loan of 1841                                                                         
   Treasury Notes Prior to 1846                                                         

C <= 2

2 < C <= 4

4 < C <= 5

5 < C <= 6

C > 6

Figure 15: Treasury Bonds Issued from 1840 to 1918.

The span of each line corresponds to the period the security was outstanding. The width is proportional to the size of the issue,
and the color denotes the coupon rate.
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