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Abstract

We revisit the role of long-term nominal corporate debt for the trans-

mission of inflation shocks in the general equilibrium model of Gomes

et al. (2016, henceforth GJS). We show that inaccuracies in the model

solution and calibration strategy lead GJS to a model equilibrium in

which nominal long-term debt is systematically mispriced. As a result,

the quantitative importance of corporate leverage in the transmission

of inflation shocks to real activity in their framework is 6 times larger

than what arises under the rational expectations equilibrium.
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1 Introduction

In advanced economies, the share of nonfinancial corporate long-term debt

over GDP has been rising since the Great Financial Crisis and reached all-

time highs after the COVID-19 pandemic (IMF, 2023; FRB, 2022). Moreover,

positive inflation surprises hit the global economy as it recovered from the 2020

recession, calling for aggressive monetary policy responses from central banks.

Against this backdrop, understanding and quantifying the role of long-term

nominal corporate debt in the propagation of inflation and monetary policy

shocks is of paramount importance.

GJS build, solve, and calibrate a quantitative general equilibrium model

in which firms issue long-term nominal debt. Nominal debt creates a link

between inflation and the real economy that they report to be a quantitatively

important source of monetary nonneutrality even when prices are fully flexible.

They also emphasize that the long-term maturity of corporate debt makes

leverage sticky and enhances the amplification and propagation of inflation

and monetary policy shocks on real activity.

In revisiting GJS’s sticky leverage framework, we find that the quantita-

tive importance of long-term corporate debt in the transmission of inflation

and monetary policy shocks is overstated. We show that this is due to con-

sequential inaccuracies in their model solution and calibration strategies that

introduce systematic underpricing of the leverage ratchet effect (Admati et al.,

2018) from the side of corporate bondholders—an unintended source of lever-

age stickiness. Once corrected, we find that long-term nominal debt in their

model provides limited amplification of surprise inflation on real activity.

GJS compute the steady state of a simplified version of their model to

inform bondholders’ generalized Euler equation in the perturbation solution

of their baseline model. In doing so, they disregard dynamic restrictions that

are crucial for holders of long-term debt claims to correctly price the effect

of firms’ shareholders’ leverage decisions on expected future defaults. Two

simplifying assumptions are consequential in delivering an inaccurate steady-

state solution. First, GJS assume that investment is independent of leverage.
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However, in the presence of long-term debt, higher leverage increases the ex-

pected default rate, reduces shareholders’ returns from investing, and has a

negative effect on investment. Second, they assume that the functional form

of the leverage policy function is a smooth polynomial. In contrast, we find

that in the baseline model (i) the leverage policy function has a kink, and (ii)

that the economy reaches a steady state at that kink. In such a steady state,

equity holders choose the highest level of leverage that is compatible with zero

default risk—thereby defying GJS’s calibration strategy targeting a positive

steady-state default rate.

As a result of these inaccuracies, GJS introduce an unintended source of

leverage stickiness in their model: model-inconsistent beliefs. Bondholders

believe that the price of debt is less sensitive to changes in leverage than it

would be in an equilibrium with rational bondholders. Intuitively, when lever-

age is elevated, bondholders underestimate the expected cost of defaults, as

they wrongly forecast that the firms’ shareholders will bring leverage down

swiftly. As a result, borrowing costs underprice default risk and sharehold-

ers will find it optimal to keep leverage higher for longer than they would if

bondholders’ expectations were rational. This feature of their solution algo-

rithm overamplifies the response of leverage and macroeconomic outcomes to

aggregate disturbances that push the corporate leverage ratio up, such as the

disinflationary shocks and restrictive monetary policy shocks showcased in the

paper.

We uncover an additional error in how GJS deal with a missing dynamic

equation for the first derivative of the leverage policy function with respect to

leverage. While solving their model with perturbation methods in the pres-

ence of a generalized Euler equation, GJS add an extra equilibrium condition

obtained by differentiating the firms’ leverage first-order condition (FOC) with

respect to leverage. This addition results in the violation of the second-order

condition (SOC) for optimality of the firm’s problem with respect to leverage.

To reassess the quantitative implications of the model, we adopt a different

solution strategy and revisit the model calibration. We adopt a perturbation-

based solution method that can account for the presence of a generalized Euler
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equation without relying on GJS’s simplifying assumptions. We deploy an al-

gorithm based on Dennis (2022) and grounded in Klein et al. (2008) that relies

on model-consistent dynamic restrictions from higher-order perturbations to

obtain an accurate first derivative of the leverage policy function. To the ex-

tent possible, we also verify our claims in a model solution obtained using

global methods.

We show that GJS’s moment targets for the steady-state market value of

leverage, default rates, and leverage volatility do not uniquely pin down the

degree of amplification and persistence of leverage in the dynamic equilibrium.

In particular, under the rational expectations solution we identify two regions

of the parameter space that deliver the same steady-state moment targets

with starkly different implications for leverage stickiness and the volatility of

borrowing costs and real activity. Within the set of possible parameter com-

binations, the ones associated with an empirically plausible tradeoff between

tax benefits and expected default costs deliver a significantly lower degree of

leverage persistence than the one reported in GJS. Moreover, any attempt to

increase leverage persistence by adjusting the calibration comes at the cost of

substantially reducing the amplification of inflation shocks.

We show that the unintended departure from rational expectations magni-

fies the effect of their baseline disinflationary shock on real activity by a factor

of 6 relative to the model solved under rational expectations and purposefully

calibrated to achieve a high degree of leverage persistence. We also show that

long-term nominal debt provides no amplification of monetary policy shocks

on aggregate output relative to a model with short-term nominal debt, once

their baseline model is extended to include sticky prices.

The comment is organized as follows. In Section 2, we describe the unin-

tended source of leverage stickiness and shock amplification introduced by the

inaccuracies in GJS’s solution strategy. In Section 2.2, we revisit GJS’s cali-

bration strategy and show that it is not well suited to uniquely pin down the

degree of leverage stickiness in the model. In Section 3, we evaluate the extent

to which bondholders’ model-inconsistent beliefs under their calibration and

solution overemphasize the quantitative importance of long-term debt in the
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transmission of inflation shocks relative to our rational expectations solution

in a set of plausible model calibrations. Section 4 concludes.

2 Inaccuracies in GJS’s Model Solution and Calibration

In this section, we argue that GJS’s proposed solution method generates a

systematic wedge between the firm’s leverage policy function and bondholders’

perception of it—i.e., the leverage policy is not time-consistent. We provide an

alternative model solution. As we recalibrate the model, we show that GJS’s

calibration strategy to match three steady-state moment targets is insufficient

to uniquely pin down the equilibrium degree of leverage stickiness.

2.1 An Unintended Source of Leverage Stickiness: Model-Inconsistent

Beliefs

In the presence of a generalized Euler equation to price long-term debt, any

solution method that perturbs equilibrium conditions around the determin-

istic steady state faces the difficulty that in order to determine equilibrium

variables at a particular point of the state space, one needs to know how the

leverage policy function, h, behaves in the neighborhood of that point. As a

result, the deterministic steady state cannot be computed without knowing

the equilibrium dynamics of leverage around that steady state. We can see

this by studying the FOC for leverage, ω′:

Q(ω′) +
∂Q

∂ω′

(
ω′ − (1− λ)ω

g(i)µ

)
= −(1− τ)E

[
M ′Φ(z∗′)

(
∂z∗′

∂ω′

)]
, (1)

and noting that the partial derivative of the price of debt with respect to next-

period leverage, ∂Q
∂ω′

can be derived by differentiating the demand function for

long-term corporate debt:

Q(ω′) := E
[
M ′
(

Φ(z∗
′
)

(
c + λ+ (1− λ)q′

µ′

)
+
(

1− Φ(z∗
′
)
)
p(ω′)

)]
. (2)
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with respect to ω′:

∂Q

∂ω′
= E

[
M ′
{

(1− λ)

(
∂Q

∂ω′′

)
h′ω
µ′

+ φ(z∗′)

(
∂z∗′

∂ω′

)(
τc

µ′
+

ξ

ω′

)
− (1− Φ(z∗′))

p(ω′)

ω′

}]
,

(3)

where p(ω′) denotes creditors’ real payoff per unit of outstanding debt in the

event of default. The assumption of rational expectations requires that the

equilibrium bond price equals the demand function evaluated at the equilib-

rium leverage policy function, i.e., q = Q ◦ h.1

For consistency with GJS’s notation, we denote the partial derivative of

leverage policy h with respect to predetermined leverage as hω := ∂h
∂ω

. The

appearance of hω in (3) poses a nontrivial problem for the computation of the

deterministic steady state: one needs to “guess” the steady-state value of hω.2

GJS frame this issue as follows: “Essentially, there is one additional variable to

solve for, namely hω, without an additional equation.” (p3812). However, this

statement is only true if one ignores the fact that the equilibrium conditions

provide cross-equation restrictions at each point of the state space, not just

at the steady state. While global solution techniques automatically take these

extra restrictions into account, they tend to be computationally intensive.3

GJS propose a compromise and devise a two-step perturbation-based solu-

tion method to approximate a rational expectations equilibrium of their model

with corporate nominal long-term debt. In the first step, they use global tech-

niques to solve for the steady-state of a simplified version of the model. In the

second step, they use the steady-state equilibrium from the simplified model to

pin down hω in the generalized Euler equation of the baseline model. In other

words, GJS conjecture that the steady state of the simplified model provides

a good guess of the unknown value of hω at the steady state of the baseline

1See appendix A for a detailed description of the financial block of GJS’s model and its
notation.

2In other words, the combination of (1) and (3) gives rise to a “generalized Euler equa-
tion.” Generalized Euler equations are different from standard Euler equations in that they
contain derivatives of variables with respect to endogenous state variables.

3Two recent examples that use global methods are Jungherr and Schott (2021) and
Jungherr and Schott (2022). In both cases, their analysis abstracts from aggregate uncer-
tainty.
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Figure 1: Policy functions from GJS’s simplified model vs baseline model
without aggregate risk

Note: Comparison of the results from GJS’s value function iteration code (blue) and a
global solution of the baseline model without aggregate risk (black). In the baseline model,
there are two states: capital k and leverage ω. For the plots we fixed capital at its
steady-state level. The left plot shows the leverage policy function h(ω, kss) as a function
of predetermined leverage ω. The right plot shows the investment-to-capital ratio i(ω, kss)
as a function of predetermined leverage ω. All parameters are as in Tables 1 of Gomes
et al. (2016).

model.

We show that this conjecture is incorrect. The public code that implements

their solution strategy reveals that a wedge exists between the value of hω

derived from GJS’s steady-state solution (≈ 0.53) and the equilibrium value

from the first-order approximation of the model dynamics (≈ 0.93). Hence,

GJS report a solution in which the creditors’ perceived hω underestimates the

leverage ratchet effect and thus the actual h exhibits an erroneously high level

and persistence of leverage.4

We find that the wedge emerges from the model simplifications that they

adopt to solve for the deterministic steady state. Two of such simplifications

warrant special attention:

1. Assuming that the steady-state investment-to-capital ratio i is

4For an intuitive explanation of how bondholders’ model-inconsistent beliefs can affect
leverage persistence relative to rational expectations, see Appendix B.
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constant rather than downward-sloping in leverage lowers hω as

perceived by bondholders. To simplify the firm’s problem and make

it univariate, GJS assume that (a) the investment-to-capital ratio, i, is

fixed and equal to the depreciation rate, i = δ; (b) creditors’ stochastic

discount factor is M = β; and (c) there is no aggregate risk. Assump-

tion (a) proves consequential in introducing model-inconsistent beliefs,

as it fails to account for the fact that investment and leverage decisions

are intertwined in a model with long-term debt. As leverage increases,

expected defaults also increase. Hence, the rate of return on capital

for shareholders drops, as does investment—that is, the steady-state

investment-to-capital ratio is downward sloping in the leverage ratio.

The right panel of Figure 1 shows the steady-state relationship between

the investment-to-capital ratio (on the y axis) and the leverage ratio (on

the x axis) computed from the global solution of GJS’s baseline model

without aggregate risk (in black) and compares it with GJS’s simplified

steady-state solution with a constant i = δ (in blue). The plot confirms

that under GJS’s calibration, the partial derivative of the investment-to-

capital ratio with respect to leverage is negative, ∂i
∂ω
≤ 0, and that the

equilibrium investment-to-capital ratio declines progressively below δ as

steady-state leverage increases.

How does ∂i
∂ω

affect the persistence of the leverage policy function? This
mechanism comes into direct focus in the FOC (1) of the firm’s problem
with respect to ω′ that we rearrange as:

ω′

(
1 +

Q(ω′)
∂Q(ω′)
∂ω′ ω′

)
−

Et
[
M ′Φ(z∗′)

(
(1− τ)c + λ+ (1− λ)q′

)
1
µ′

]
∂Q(ω′)
∂ω′

=
1

g(i)

(1− λ)ω

µ

to reveal that next period leverage ω′ is increasing in current leverage

ω and that the investment-to-capital ratio, i, inversely affects the slope

of such a relationship—and hence conditions the first derivative of the

leverage policy function in equilibrium, hω. The left panel of Figure 1

shows that the slope of the policy function derived from GJS’s simplified

model computed under the assumption i = δ (in blue) is indeed lower
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than the slope of the time-consistent policy function derived from the

baseline model (in black) for any value of ω : i < δ.5

2. A bounded distribution for firms’ idiosyncratic risk introduces

a kink in the leverage policy function, while GJS approximate

such a function with a smooth polynomial. In the baseline model,

the idiosyncratic shock distribution Φ(z) has a bounded support im-

plying that firms always have the option to make their debt risk-free

by choosing the highest ω′ compatible with zero default probability,

Φ(z∗′) = 1. This specification introduces a kink in the demand function

for corporate debt Q. GJS implicitly disregard this kink by restricting

the functional form of Q to be a smooth, higher-order polynomial in the

value function iteration algorithm that solves for the steady state.

The quantitative implications of these assumptions are illustrated in Figure

1. The figure compares the policy functions from GJS’s simplified model

(blue) with the policy functions from the baseline model without aggregate

risk (black) using the parameter values in Table 1 of GJS. The two policy

functions intersect with the 45-degree line in the left quadrant at the model’s

steady-state leverage. Both the steady-state level for leverage and the first

derivative—i.e., the persistence—of the leverage policy function are very dif-

ferent in the two models. In fact, the steady state of the baseline model (the

black dot) lies at the kink with zero default risk: firms choose an ω′ that max-

imally exploits the tax advantage of debt without having to bear any future

costs of default. Moreover, at the steady state of the simplified model, invest-

ment i = δ is constrained to be higher than it would be in the baseline model.

Hence, the simplified model downplays the costs of the leverage ratchet effect.

As a result, the slope of the leverage policy at the steady state (point A) is

lower than the slope of the rational expectations leverage policy at the same

leverage value (point B).

5In addition, assumptions (b)-(c) ignore the fact that higher-order terms associated with
risk premia affect both the deterministic steady state and the first-order approximation of
the model solution around that steady state through their influence on hω. Admittedly, the
assumption of logarithmic utility makes the quantitative effect of (b)-(c) relatively small.
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Once GJS compute the steady state and the slope of the policy function

hω from the incorrect simplified model solution, they use this information

to write down the generalized Euler equation of the baseline model and to

perturb the FOC of the dynamic system. In doing so, GJS de facto assume

that bondholders’ beliefs downplay the leverage ratchet effect relative to the

firms’ optimal policy. As detailed in Appendix B, the emergence of such a

wedge in beliefs implies that both the level and the degree of persistence of

leverage in the dynamic equilibrium are higher than they would be in a model

solution in which bondholders’ beliefs were model-consistent.6

Moreover, in the second step of their solution strategy, GJS resolve the

missing-equation problem described earlier by producing an additional equa-

tion that, we argue, imposes undue restrictions on the second-order conditions

of the firms’ problem. They propose to differentiate the firm’s FOC (1) with

respect to the firm’s leverage choice ω′. GJS adopt this strategy in the spirit

of Klein et al. (2008), who solve the time-consistent steady state of an optimal

policy problem without commitment. Crucially, in Klein et al. (2008), differ-

entiating the private sector’s FOCs with respect to the social planner’s own

choice variables is valid, because the private sector’s FOCs must hold for all

attainable values of the planner’s choice variables. We argue, however, that

GJS’s approach—which they highlight as an important additional novelty of

their paper—is conceptually wrong in their competitive equilibrium problem.

In their set-up, the firm’s FOC with respect to leverage (1) does not have to

hold for all values of leverage, ω′. Including this restriction as an additional

model equation amounts to imposing that the second derivative of the objec-

tive function with respect to the leverage choice is equal to zero and, therefore,

that the firm’s SOC for local optimality is violated at the steady state.7 In

sum, GJS’s proposed solution method effectively restricts the curvature of the

shareholder value function in the direction of leverage and casts doubt on the

local optimality of firms’ policies under their solution method.

6Incidentally, the qualitative implication of this error is similar in spirit to Miao and
Wang (2010), who assume h̄ω = 0.

7Using our global solution, we verify that the value of the SOC under the time-consistent
solution is always strictly negative.
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In what follows, we overcome GJS’s two-step solution by relying on the

solution method of Dennis (2022), which elicits the required information about

the model dynamics from higher-order perturbations in the neighborhood of

the steady state. We postulate a first-order approximation of hω around the

steady state and pin down the coefficients of this policy function by iterating

on the second-order approximation of the full model, which includes a second-

order approximation of h. This algorithm ensures that the solution is accurate

to the first order. In Appendix C, we describe this method in more detail,

including how it can be used to obtain an exact solution to any desired order

of approximation.

2.2 GJS’s Calibration Strategy Cannot Uniquely Pin Down Lever-

age Stickiness

In this section, we deploy our rational expectations solution of the model to

reassess GJS’s model calibration strategy. As we adopt the same steps detailed

in their paper, we find that there exist at least two calibrations that can

match their moment targets and have very different implications for leverage

stickiness.

After setting the coupon rate c so that the price of default-free corporate

debt is 1 and debt maturity λ so that the average corporate debt maturity is 5

years, GJS identify three parameters as crucial determinants of the persistence

of firm leverage: default cost ξ, corporate tax rate τ , and the parameter η1 that

is inversely related to the dispersion of the idiosyncratic shock distribution. In

order to calibrate the triplet (ξ, η1, τ) they propose three moment targets:

(I) average quarterly default rate of 0.26 percent, i.e., Φ(z̄∗) = 1− 0.0026,

(II) market value of leverage of 42 percent, i.e., q̄ω̄ = 0.42,

(III) unconditional volatility of the leverage ratio of 1.7, i.e., σω = 1.78,

8The model-implied unconditional volatility of ω is computed as the standard deviation
of the log difference between a simulated ω-path and its HP-filtered trend (with λ = 1600).

11



where the bars ·̄ denote values of model variables at the deterministic steady

state.

GJS acknowledge that their model is unable to match all three moment

targets—in particular, the unconditional leverage volatility of 1.7 appears

much higher than what a model with two aggregate shocks can attain. We

address this difficulty by calibrating (ξ, η1, τ) in two steps. First, we identify

the set of (ξ, τ) pairs that lead to steady states that satisfy moment targets

(I) and (II) exactly. The red line on the left panel of Figure 2 shows the set of

such (ξ, τ) pairs. The blue dot represents the parameter values of GJS. The

fact that the blue dot is not on the red line is a manifestation of the fact that

the parameter values in Table 1 of GJS are calibrated with inconsistent bond

holders’ beliefs that cannot satisfy their moment targets under the rational

expectations solution.9 We then note that conditional on targets (I) and (II)

being satisfied, the steady-state version of the firm’s FOC for investment

1− q̄ω̄ = (1− τ)β

(
z̄∗Φ(z̄∗)−

∫ z̄∗

z

zdΦ

)
,

provides a one-to-one mapping between τ and η1 via the dependence of the

distribution Φ on η1. This means that the three-dimensional problem reduces

to a two-dimensional search in terms of (ξ, τ), because each (ξ, τ) automatically

determines a specific η1 value. In the second step of our calibration strategy,

we choose the pair (ξ, τ)—and thereby η1—so that the implied equilibrium σω

minimizes the distance from target (III).

The orange line on the right panel of Figure 2 depicts the equilibrium

leverage volatility σω as a function of η1 (each value corresponding to a different

point on the red line of the left panel). The nonmonotonic relationship arises

from the fact that the partial derivative of the leverage policy with respect

to inflation, hµ := ∂h
∂µ

, switches signs along the red line, from being positive

for relatively low values of η1 to being negative for relatively high values of η1

reaching zero around η1 ≈ 0.703. This implies that we can generate relatively

9In fact, as we saw in Section 2.1, the corresponding steady-state default rate under the
time-consistent solution is zero, rather than the desired 0.26 percent.
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Figure 2: Steady states consistent with moment targets (I) and (II)
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Note: The red line on the left panel shows the set of (ξ, τ) pairs that lead to steady states
with model-consistent beliefs and a quarterly default rate of 0.26 percent and a market
value of leverage of 42 percent. Conditional on these two moment targets, there is a
one-to-one relationship between τ and η1. Parameter η1 runs from 0.6815 (GJS’s value) to
0.75 which is the theoretical upper bound for values that generate strictly positive density
for the idiosyncratic shock distribution. The gray line on the right panel shows the steady
state hω (a proxy of leverage persistence) as a function of η1 (left y-axis). The orange line
on the right panel shows the unconditional leverage volatility σω as a function of η1 (right
y-axis). The blue dots represent GJS’s values. The black cross represents our “high
persistence benchmark” of (ξ, τ, η1) = (0.047, 0.404, 0.6815) with (hω, σω) = (0.98, 0.96).
The green square represents our “low persistence benchmark” of
(ξ, τ, η1) = (0.359, 0.389, 0.7315) with (hω, σω) = (0.65, 0.96). All other parameters as in
Table 1 of Gomes et al. (2016).

high levels of leverage volatility σω in two ways: either with a combination

of high idiosyncratic risk volatility (low η1), low default costs (ξ), and a high

corporate tax rate (τ) or with a combination of low idiosyncratic risk volatility

(high η1), high default costs (ξ) and low corporate tax rate (τ). In other words,

there are at least two regions of the parameter space (represented by the two

humps of the orange line) that can get us close to GJS’s three moment targets.

The gray line on the right panel of Figure 2—showing the steady-state value of

hω that we view as a proxy for leverage stickiness—demonstrates that the two

regions exhibit starkly different leverage persistence. This different leverage

persistence means that GJS’s calibration strategy is not suitable to uniquely

pin down a plausible degree of leverage stickiness.
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To get a sense of the range of leverage stickiness the model can generate,

we will use two economies that are meant to represent the two relevant regions

of the parameter space:

• high-persistence benchmark (denoted by the black cross), which

keeps GJS’s idiosyncratic shock distribution fixed and calibrates (ξ, τ)

to match moment targets (I) and (II)

• low-persistence benchmark (denoted by the green square), which we

choose so that it exhibits the same (Φ(z̄∗), q̄ω̄, σω) values as the high-

persistence benchmark, but we require η1 > 0.71

Additional consideration can be devoted to determining which combination

of calibrated parameters is more in line with microeconomic evidence. Along

these lines we note that the low-persistence benchmark calibration appears

more empirically plausible, with a relatively low capital tax τ and a relatively

high default cost ξ compared with the high-persistence benchmark.10 In con-

trast, the location of the blue dot on the right panel of Figure 2 suggests

that GJS’s calibration is much closer to the high-persistence benchmark, so

the latter might be viewed as the counterpart of GJS with model-consistent

beliefs.

3 Leverage Stickiness Provides Limited Amplification

of Inflation and Monetary Policy Shocks

In this section, we reexamine the main finding of GJS—namely, that the pres-

ence of nominal long-term defaultable debt significantly amplifies the effect

and propagation of inflation shocks to the real economy—and find that the

calibration and solution method implemented in GJS overemphasize the im-

portance of this transmission mechanism. We wish to understand how much

10For example, Elenev et al. (2021) argue that ξ should be around 0.5, while He and
Milbradt (2014) find that bankruptcy costs are, on average, about 40% of the value of firms’
bonds.
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leverage stickiness one can expect from the leverage ratchet effect alone with-

out the amplifying forces of model-inconsistent beliefs that we described in

Section 2.1.

To assess how the existence of nominal long-term debt affects the prop-

agation of inflation shocks, Figure 2 in GJS reports the responses of aggre-

gate variables to a negative inflation shock. These impulse response functions

(IRFs) are replicated in Figure 3 by the blue dotted lines. They show how

a negative shock to inflation increases the real burden of outstanding corpo-

rate debt and expected default rates in a very persistent way, even though

inflation returns to its steady-state value relatively quickly. This persistent re-

sponse of corporate leverage and default translates into a persistent response

of investment and output.

We contrast these IRFs that combine the leverage ratchet effect and model-

inconsistent beliefs with responses shaped by the leverage ratchet effect alone.

In particular, the dashed black and solid green lines in Figure 3 represent IRFs

from our high-persistence benchmark and low-persistence benchmark calibra-

tions, respectively. As discussed previously, these economies were calibrated

so that they satisfy moment targets (I) and (II) exactly and get as close as

possible to target (III). By and large, these IRFs are representative of the

dynamics that we can expect from the model with a very low default cost

(high persistence) and an empirically more plausible level of default cost (low

persistence). In addition, the shaded areas in the panels of Figure 3 show the

min-max ranges of attainable IRFs, assuming that one uses only targets (I)

and (II) and disregards target (III). In other words, they summarize the IRFs

that can be obtained by any of the calibrations compatible with the red line

in the left panel of Figure 2.

The responses of aggregate real variables to the inflation shock under

model-consistent beliefs are markedly different from those in GJS. In particu-

lar, inflation shocks no longer have strong and persistent effects on investment

and output. Under calibrations for which the initial response is somewhat

strong, persistence tends to be very low. Under calibrations for which per-

sistence is higher, the initial response is substantially weaker than reported
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by GJS. Moreover, as we discussed earlier, high persistence requires unreal-

istically low bankruptcy costs ξ. The systematic misperception by creditors

implicit in GJS, in combination with the other inaccuracies we have pointed

out, overemphasizes the degree of amplification of output arising from leverage

stickiness by a factor between 1.2 and 6 on impact depending on the triplet of

parameter values (ξ, τ , η1) under consideration. Under the high-persistence

benchmark, a disinflationary shock causes output to drop by 0.09% on impact

compared to 0.52%. Under the low-persistence benchmark, the same shock

causes output to drop by 0.42%, although the effects are short-lived. While

the half-life of the inflation shock to output reported by GJS is 4 years, it is

2 quarters in the low-persistence benchmark and more than 10 years in the

high-persistence benchmark.

Finally, we apply the above solution and calibration methodology to the

New Keynesian version of GJS’s model that includes sticky prices (described in

Section IV of the original paper). Figure 4 shows a comparison between GJS’s

published impulse responses for the one-period and long-term debt version of

their New Keynesian model—the orange dashed-dotted and the blue dotted

lines respectively—and the corresponding responses computed under the low-

persistence and high-persistence benchmarks under the rational expectations

equilibrium of the model with long-term debt—the green and black dashed

lines. The impulse responses suggest that under rational expectations and

a range of plausible model calibrations, long-term nominal debt provides no

amplification of the effects of monetary policy shocks on aggregate output

relative to a model with a New-Keynesian model with one-period nominal

debt.11

4 Concluding Remarks

In this paper, we revisit the role of long-term corporate debt in the transmis-

sion of inflation shocks in Gomes et al. (2016). We show that inaccuracies

11In Appendix D, we highlight the important quantitative consequence of GJS’s calibra-
tion of a 100% deadweight loss from corporate default. We find that the majority of the
output response in the top-right panel of Figure 3 is attributable to this direct effect.
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in the model solution and calibration strategy result in an overstatement of

the quantitative importance of long-term corporate debt in the transmission

of inflation shocks. The excessive amplification and propagation of shocks

stem from GJS’s solution method reaching an equilibrium in which creditors

display beliefs on firms’ leverage decisions that are incompatible with rational

expectations. A systematic misperception dampens the response of borrowing

costs to changes in expected default risk and exaggerates the implications of

leverage stickiness for real activity of inflation shocks by up to a factor of six.

Any attempt to recalibrate the model to increase leverage stickiness comes at

the cost of lower amplification of the effects of inflation shocks on real activity.
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Figure 3: Impulse Responses to a Disinflation Shock in Model with Flexible
Prices
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Note: This figure reproduces the impulse responses from the solution of their flex-prices
model with model-inconsistent beliefs displayed in Figure 2 of Gomes et al. (2016) (blue
dotted lines) and compares them to a range of possible impulse responses coming from
rational expectations equilibria with different (ξ, η1, τ) tuples that satisfy GJS’s moment
targets. The gray areas show the min-max range of attainable impulse responses for each
horizon. The black dashed lines represent IRFs from our “high persistence benchmark”
with (ξ, η1, τ) = (0.047, 0.404, 0.6815). The green solid lines represent IRFs from our “low
persistence benchmark” with (ξ, η1, τ) = (0.359, 0.389, 0.7315). All other parameters are as
in Table 1 of Gomes et al. (2016).
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Figure 4: Impulse Responses to a Monetary Policy Tightening Shock in Model
with Sticky Prices
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Note: This figure shows the impulse responses from GJS’s solution of their New Keynesian
sticky-prices model with model-inconsistent beliefs (blue dotted lines) and compares them
to a range of possible impulse responses coming from rational expectations equilibria with
different (ξ, η1, τ) tuples that satisfy GJS’s moment targets. The gray areas show the
min-max range of attainable impulse responses for each horizon.
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A The Intended Source of Leverage Stickiness: the Lever-

age Ratchet Effect

GJS introduce nominal defaultable long-term debt in a quantitative general

equilibrium model. In their framework, corporate debt financing has a tax

advantage relative to equity, and limited liability makes voluntary default pos-

sible. Costly default gives rise to a tradeoff between debt and equity, so that

firm leverage—defined as the ratio ω := b/k between debt b and capital k—is

a well-defined choice variable. When debt is long-term, firm leverage becomes

an endogenous state variable as a result of the leverage ratchet effect of Ad-

mati et al. (2018). Finally, when long-term debt contracts are set in nominal

terms, surprise inflation or deflation has a direct effect on the real burden of

debt and leverage, leading to potentially persistent real effects. GJS articu-

late this mechanism in a flexible-price model that they later extend by adding

sticky goods prices and a monetary policy rule. In this comment, we focus

on GJS’s flexible-price model, but all of our findings carry through in their

extended New Keynesian model.

There is a continuum of measure one of firms. At the beginning of the

period, each firm j is hit by an idiosyncratic additive revenue shock zjt . The

shock zjt is i.i.d. across firms and time, has mean zero, and cumulative dis-

tribution function Φ. Firms finance capital investment by issuing equity and

a defaultable nominal debt instrument bjt with price qt, coupon rate c, and

(fixed) average maturity 1/λ. GJS set up the environment so that the firm’s

problem is linearly homogeneous in capital and debt, so, given predetermined

leverage ω, firms’ choices are identical, and the j superscript can be dropped.

The shareholder value per unit of capital at the end of the period (excluding

period t earnings) is denoted by υ(ω).

Limited liability implies that shareholders will choose to default on their

debt obligations whenever after-tax earnings plus shareholder value υ(ω) fall

below the debt service cost. This occurs whenever the idiosyncratic revenue

shock is larger than a threshold value, z ≥ z∗, with the cutoff z∗ being deter-
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mined by

(1− τ)z∗ = (1− τ)R + δτ + υ(ω)− ((1− τ)c + λ)
ω

µ
, (4)

where µ is gross inflation, R denotes the pretax rental rate on capital, τ is

the linear tax rate on earnings, and δτ is the tax shield accrued from capital

depreciation at rate δ. The last term on the right-hand side is the debt service

cost, which includes a tax shield term, τc, because coupon payments are tax

deductible.

At the end of each period, firms choose their investment-to-capital ratio, i,

and next-period leverage, ω′, subject to capital accumulation k′/k = 1−δ+i =:

g(i) and the representative investor’s demand function for risky corporate debt

Q(ω′), which expresses the required price for any level of ω′. The demand

function is ω′ dependent, because leverage affects the default threshold z∗

and, hence, the probability of default (see (4)). As a result, when purchasing

corporate debt, the representative investor must take the issuing firm’s leverage

policy into account. Let h denote the leverage policy of a firm with current

leverage ω and aggregate states s so that ω′ = h(ω, s).

In the event of default, creditors’ real payoff per unit of outstanding debt

is given by

p(ω, s) =
(1− τ)(R− Ez[z|z > z∗]) + δτ − ξ + υ(ω) + (1− λ)q ω

µ

ω
,

where ξ represents an additive default cost. The demand function for corporate

debt is then determined by the Euler equation of the investor with one-period-

ahead stochastic discount factor M ′:

Q(ω′) := E
[
M ′
(

Φ(z∗
′
)

(
c + λ+ (1− λ)q′

µ′

)
+
(

1− Φ(z∗
′
)
)
p(ω′)

)]
. (5)

Taking the default threshold z∗, stochastic discount factor M ′, and demand
function Q as given, firms maximize their shareholders’ value by solving the
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following Bellman equation:12

υ(ω) = max
i,ω′

Q(ω′)
(
ω′g(i)− (1− λ)

ω

µ

)
− i+ g(i)E

[
M ′
∫ z∗′

z

(1− τ) (z∗′ − z′) dΦ

]
. (6)

The demand function Q(ω′) is a downward-sloping function of leverage: higher

leverage implies higher expected default rates and lowers bond prices. Low

bond prices hurt the firm, because issuing new debt becomes more costly.

When debt is long term (λ < 1), however, increasing leverage benefits share-

holders because it dilutes old bondholders’ claims. As a result, long-term debt

introduces a potential conflict between firm value maximization and share-

holder value maximization, which, in equilibrium, resolves in favor of share-

holders resisting buying back outstanding long-term debt—what Admati et al.

(2018) call the “leverage ratchet effect.” Rational forward-looking creditors

understand the shareholders’ incentives toward higher leverage and will con-

sistently adjust bond prices to be compensated for the additional default risk

that they will have to bear. In a Markov Perfect Equilibrium with time-

consistent policies, the interaction of shareholders’ incentives and creditors’

best response makes leverage a persistent state variable and delivers a policy

function h that is upward sloping and convex.

B The Unintended Source of Leverage Stickiness: Model-

Inconsistent Beliefs vs. Rational Expectations

The demand function Q(ω′) and the equilibrium bond price q are distinct

objects, but the assumption of rational expectations links them together by

requiring that the equilibrium bond price equals the demand function evalu-

ated at the equilibrium leverage policy function, q = Q◦h. Suppose, however,

that the bondholders’ expectation of what leverage policy firms will choose in

the future is not rational: for unspecified reasons, instead of h, they incor-

12The assumption that firms take the demand function Q as given is a stronger notion
than rational expectations, because it requires that firms also know the prices of assets that
are not traded in equilibrium. This approach follows Makowski (1983) and—as explained
by Gale and Gottardi (2020)—delivers the same results as assuming complete markets for
all debt and equity contracts, as in Hart (1979) and Allen and Gale (1991).
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rectly and systematically perceive that firms’ leverage policy will be governed

by some other function h̄. As a result, when bondholders price long-term cor-

porate debt, they will input q′ = Q ◦ h̄′ instead of q′ = Q ◦ h′ in the pricing

equation (5). The demand function will depend on model-inconsistent beliefs

over the leverage policy function, h̄. Firms take this h̄-dependent demand

function as given when choosing their optimal leverage policy h to maximize

shareholders’ value, as a solution to (6). Therefore, in an equilibrium with

model-inconsistent beliefs, a wedge arises between the perceived leverage pol-

icy h̄, which shapes the demand for corporate debt, and the actual leverage

policy h, which is the firms’ best response to that demand.

To build intuition on the implications of model-inconsistent beliefs on

the degree of leverage stickiness, Figure 5 depicts leverage policies (left) and

steady-state demand functions (right) from a version of the model without

aggregate uncertainty, solved with global methods. The figure compares the

time-consistent equilibrium (black solid lines) with an equilibrium with model-

inconsistent beliefs (green solid lines) under the assumption that bondholders’

perceived h̄ω (green dashed line) is lower than the equilibrium hω. The steady-

state demand functions in the right panel are downward sloping and concave

in ω′, showing how creditors—anticipating the leverage ratchet effect—try to

discourage shareholders from leveraging up by making new debt increasingly

costly. This conflict of interest explains why firms with a high level of lever-

age tend to maintain next period’s leverage elevated, illustrating that a large

stock of outstanding old debt makes shareholders less averse to bearing the

increasing cost of new debt.

Figure 5 shows that the demand function from the equilibrium with model-

inconsistent beliefs (green) is flatter than the rational expectations counterpart

(black) for any value of ω′. The policy functions intersect with the 45 degree

line in the left quadrant at the model’s steady-state leverage. What makes the

green demand curve flat is the fact that it incorporates the bondholder’s model-

inconsistent leverage policy h̄ (green dashed line in the left panel) rather than

the equilibrium firm behavior h (green solid line in the left panel) and that the
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Figure 5: Leverage policy h and demand function Q in a model without ag-
gregate risk
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Note: Results from a global solution of the model without aggregate risk. There are two
states: capital k and leverage ω. For the plots we fixed capital at its steady-state level.
The left plot shows leverage policy functions h(ω, kss) as a function of predetermined
leverage. The right plot shows demand functions Q(ω′;ωss, kss) at the respective steady
state (colored dotted lines) as a function of next period leverage ω′. Black solid lines are
from the time-consistent equilibrium. Green solid lines are from an equilibrium with
model-inconsistent beliefs. The green dashed line on the left panel represents the
bondholders’ misperceived policy h̄(ω) = hss + hω(ω − hss) + hωω

2 (ω − hss)2 with
(hss, hω, hωω) = (0.378, 0.04, 0.5). In addition, we used
(η1, ξ, τ, λ) = (0.7192, 0.3089, 0.37, 0.09). The rest of the parameters are as in Tables 1 of
Gomes et al. (2016).

slope—and hence the persistence—of the misperceived leverage policy is much

lower than that of the actual policy. As a result, the equilibrium policy with

model-inconsistent beliefs (the green solid line in the left panel) shows that

next period leverage ω′ is optimally higher for any present level of leverage ω

relative to the rational expectations policy function. Moreover, at the steady

state, the slope of the policy function under model-inconsistent beliefs is higher

relative to its rational expectations counterpart. Intuitively, the flat demand

curve of bondholders fails to provide sufficient incentives for the shareholders

to reduce firm’s leverage, effectively amplifying the leverage stickiness via the
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leverage ratchet effect.13 Consequently, while leverage is persistent under the

rational expectations policy, Figure 5 shows how the magnitude of its persis-

tence can be amplified when the creditors’ perceived leverage policy h̄ is at

odds with actual firm behavior h. In Section 2 we detail how inaccuracies in

GJS’s solution algorithm introduce model-inconsistent beliefs in their model.

C A Perturbation-Based Solution Algorithm to Com-

pute the Rational-Expectations Equilibrium

The algorithm below describes how to obtain the nth-order accurate perturba-

tion of the model solution around the steady state. The starting point is the

formulation of an initial guess of the nth-order policy rule for hω, followed by

the implementation of this iterative algorithm:

• Step 1: Use the model equilibrium conditions augmented with the nth-

order guess of hω to pin down the model steady state and compute the

(n+ 1)th-order perturbation solution around that steady state.

• Step 2: Differentiate the h policy function obtained in the (n+1)th-order

solution of Step 1 with respect to ω to obtain the nth-order equilibrium

policy rule for hω.

• Step 3: Update the nth-order guess of hω using the equilibrium value

obtained in Step 2 and return to Step 1. Iterate until convergence of

the guess of hω used in Step 1 and the equilibrium policy rule for hω

extracted in Step 2.

D The Dynamic Effect of Default Losses on Aggregate

Output

We point out an important quantitative consequence of an arguably arbitrary

and extreme calibration decision in GJS; the assumption that 100% of the

13The same force works the other way as well (not shown): if the perceived h̄ exhibits
higher persistence than the rational expectations policy, the best response h will have a
relatively low persistence relative to the rational expectations policy.
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bankruptcy losses represent real deadweight losses (ξr = 1), which leads to a

direct link between the responses of default rate and output. We find that

the majority of the output response in the top-right panel of Figure 3 is at-

tributable to this direct effect. To illustrate this point, Figure 6 relaxes that

assumption and assumes, instead, that bankruptcy costs are fully rebated to

households (ξr = 0). As a result, the amplification and propagation of infla-

tion shocks become much weaker. Assuming 100% deadweight losses increases

the degree of amplification of inflation shocks on output by a factor in ex-

cess of about 1.5 to 8 on impact, compared with a calibration in which 0% of

bankruptcy costs are deadweight losses.
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Figure 6: Impulse Responses to an Disinflation Shock in Flex Price Model
with Deadweight Losses ξr = 0
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Note: This figure shows the impulse responses from GJS’s flex-prices model solution with
model-inconsistent beliefs (blue dotted lines) and compares them to a range of possible
impulse responses coming from rational expectations equilibria with different (ξ, η1, τ)
tuples that satisfy GJS’s moment targets. The gray areas show the min-max range of
attainable impulse responses for each horizon.
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