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Abstract

Estimating 19th century US federal bond yield curves presents challenges because
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and there were wars. This paper compares statistical approaches for confronting these

difficulties and shows that a dynamic Nelson-Siegel model with stochastic volatility and

bond-specific pricing errors does a good job for historical US bond prices. This model is

flexible enough to interpolate data across periods in a time-varying way without over-

fitting. We exploit new computational techniques to deploy our model and estimate

yield curves for US federal debt from 1790-1933.
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1 Introduction

Historical yield curves contain information about financial implications of political, institu-

tional, and technological changes. However, estimating yield curves using historical bond data

requires confronting several challenges: few bonds were issued, some bonds had discretionary

features, and macroeconomic data are unreliable. For a new data set containing prices, quan-

tities, and descriptions of all securities issued by the US Treasury between 1776 and 1960,

this paper uses modern sampling techniques to estimate and compare different approaches for

inferring term structures of yields on US federal bonds. An information criterion selects a non-

linear state space model with drifting parameters and stochastic volatility as a parsimonious

model with enough sufficient flexibility to pool data across periods in a time-dependent way.

Exploiting new computational techniques to handle non-linear models with time varying pa-

rameters lets us work with very long time series that span different institutional arrangements.

We thereby build bridges between macroeconomics and US economic history.

A first challenge is that our data set is sparse along the cross-section dimension. We tackle

this problem by adopting a time-varying version of a statistical model proposed by Nelson

and Siegel (1987). Economists at policy institutions use a similar parameterization, but in

inferring a yield curve from observed prices and quantities they face a different challenge than

we do. Because they have a superabundance of cross-section data on prices and quantities at

each date, they solve an overdetermined inference problem. Our data are too sparse along the

cross-section dimension to allow us to use even a just-identified version of the commonly used

procedure. To confront this data deficiency, we enlist a “prejudice” or “induction bias” in the

form of a parameterized statistical model of a panel having scattered missing observations.

The data and statistical model tell us how much smoothing across time to do.

A second challenge is that 19th century US federal bonds often gave lenders and the Trea-

sury discretion over maturity dates, conversions, and other features. Our inference procedure

assumes that agents priced bonds under perfect foresight about those discretionary contract

features. To prevent such assumptions from influencing our inferences too much, we introduce
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bond-specific idiosyncratic pricing errors. This decreases the influence of peculiar bonds on

our yield estimates while alerting us to situations when our assumptions prevent our pricing

formulas from consistently pricing our cross-section of bonds.

A third challenge is that 19th century macroeconomic data are unreliable. This prevents us

from directly estimating a stochastic discount factor process that prices macroeconomic risks,

especially at high frequencies. For this reason, we adopt a flexible approach that specifies a

general discount function process with a law-of-one price restriction across maturities for each

date, but that does not explicitly impose the absence of arbitrage. Our specification captures

various models ranging from affine asset pricing models to preferred habitat models; but using

it restricts us to estimating yield curves that bundle haircut risk and convenience premia into

a single time-varying pricing kernel.

Another challenge is to infer posterior distributions for parameters of a complicated non-

linear statistical model without relying on the particle filter or Gibbs sampling. We approxi-

mate posterior probabilities by deploying Hamiltonian Monte Carlo and No U-Turn sampling

(HMC-NUTS). Our data set has many peculiarities—such as changing numbers of observed

assets, bonds that have payoff streams of varying lengths, missing price observations, and

relevant sets of bond-specific pricing errors changing over time in complicated ways—that

prevent us from applying a “standard” Stan toolkit and force us to code our log posterior

functions from scratch. Our application of the DynamicHMC.jl package by Papp et al. (2021)

can be used for other economic models with tractable likelihood functions that do not easily

fit into the Stan framework.

Peculiarities of our historical data set present us with decisions about which statistical

model to adopt. We use cross-validation and information criteria to ascertain model features

that can help us efficiently pool information about parameters across dates. Both criteria

agree that adding stochastic volatility to the standard Dynamic Nelson-Siegel model improves

predictive accuracy because it lets the degree of information pooling vary over time. In con-

trast, mean reverting parameters bring insufficient benefits to compensate for their additional
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complexity. The criteria are unable to discern whether it is useful to introduce a Svensson pa-

rameterization that allows for yield curves with a double hump. We choose to omit it because

we have insufficient data to include both stochastic volatility and the Svensson parameteriza-

tion. Thus, in the end we choose the Dynamic Nelson-Siegel model with stochastic volatility

but without a second hump.

To confirm that our approach lets us infer yield curve parameters from relatively few

price observations, we conduct a “laboratory experiment”. We generate artificial data from

a price process for which we know the “true” parameter values and then proceed to deploy

our econometric procedure to estimate a posterior for the parameters. We investigate two

situations: (i) one in which long term bonds have maturity dates that are evenly distributed

over the sample period, and (ii) another in which there is an extended period without bonds

that mature in less than 10 years. The first situation is representative of our historical sample

and leads to a posterior with parameters close to their true values. By contrast, the second

situation, which is unusual in our sample, leads to a posterior for parameters that are much less

close to true values. This indicates that the structure of our Nelson-Siegel parameterization

does not automatically generate tight posteriors. It is because we have a sample that is

representative enough to deploy our procedure that we are able to attain tight posteriors for

our parameters.

Related Work Our work is related to Svensson (1995), Dahlquist and Svensson (1996),

Cecchetti (1988), Annaert et al. (2013), Andreasen et al. (2019), Diebold and Li (2006) and

Diebold et al. (2008) who, like Gürkaynak et al. (2007) and ourselves, implement versions of the

parametric yield curve model of Nelson and Siegel (1987). Computing posterior distributions

implied by our data and our statistical model is a formidable task that we accomplish by using

the HMC-NUTS algorithm of Hoffman and Gelman (2014) and Betancourt (2018). While this

estimator has been used extensively in statistics, economic applications are scarce. Prominent

exceptions are Bouscasse et al. (2021), who use it to study the evolution of productivity in

England from 1250 to 1870 and Farkas and Tatár (2021), who estimate DSGE models with
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ill-behaved posterior densities.

Outline: Section 2 describes the dataset. Section 3 describes and compares a range of

statistical models. Section 4 conducts a “laboratory” experiment as a robustness check for

our procedure. Section 5 discusses the model fit. Section 6 reports our estimated zero-coupon

yields. Section 7 concludes.

2 Data Set and Its Limitations

2.1 Data Description

We have assembled prices, quantities, and descriptions of all securities issued by the US

Treasury between 1776 and 1960. We combined existing historical databases with transcription

from the digital archives of newspapers and government reports. Table 3 summarizes the

different data sources we have used in constructing the dataset. The data set for bond prices

and quantities is available on Github repository1 and construction methods are explained in

Hall et al. (2018).Our bond price data are monthly. When available, we use the closing price

at the end of each month. However, if a closing price is not available, then we use an average

of high and low prices or an average of bid and ask prices.

In order to estimate yield curves, we need to construct the currency flows promised by each

bond. For many of the early bonds in the sample, both the coupon dates and the maturity

date are ambiguous because we lack detailed information on each bond issue and because it is

unclear whether newspaper prices are ex or cum dividend. For the coupon dates, we used the

following rule. If Bayley (1882) lists exact coupon dates, then we use those dates. Otherwise,

we identify the coupon dates from cyclical decreases in the price series at the frequency of

coupon payment. For the maturity dates, we used the following rules. For bonds with explicit

maturity dates, we set the maturity to that date. Otherwise, we impose that investors had
1Our data are posted at https://github.com/jepayne/US-Federal-Debt-Public. Only data from pub-

licly available data sets are posted on the GitHub page.
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perfect foresight about the early redemption and set the maturity date to be the date at which

greater than 90% of the outstanding bonds had been redeemed.

From 1862-1878, two currencies circulated: gold coins and non-convertible “greenback”

dollars. In this paper, we restrict attention to gold denominated bonds and exclude all bonds

of other denominations. We extend our approach to estimate greenback denominated yield

curves and exchange rate expectations in Payne et al. (2023).

0

5

10

15

20

25

30

35

Nu
m

be
r o

f a
ss

et
s

1790
1800

1810
1820

1830
1840

1850
1860

1870
1880

1890
1900

1910
1920

1930
0

10

20

30

40

50

Ye
ar

s t
o 

m
at

ur
ity

Figure 1: Our Dataset

The top panel depicts the number of securities with observed prices each month. The bottom panel depicts
maturities (in years) of observed securities. Darker lines indicate overlapping securities. Red bars correspond
to wars.

2.2 Inference Challenges

Skilled researchers have estimated yield curves on US federal debt for the post-WW2 period, by

which time federal debts had become standardized and government bonds for sale had become

plentiful. We estimate yield curves starting in 1791 and so have to confront challenges posed
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by peculiar structures of US federal bond markets before 1920. This requires us to address

the following questions.

Q1. How should we handle periods with sparse bond data? Figure 1 depicts a monthly

time series for the number of securities with observed prices and times to maturity of all

outstanding bonds. Often there were fewer than five price observations at a given date and

no price observations in the late 1830s when the federal government had no outstanding debt.

This means that while we have “big data,” our unbalanced sample prevents us from applying

commonly used techniques from the yield curve estimation literature. Instead, we must posit

a statistical model that lets us learn about yields at all dates simultaneously by pooling

information across time periods.

Q2. How should we handle peculiar bonds? Throughout our sample, many US Treasury

securities had special features such as indefinite maturities associated with call or conversion

options. We start by ex post imputing perfect foresight about call dates and other discretionary

components of the contracts. We then look for bond-specific pricing errors and refine these

assumptions.

Q3. How should we handle haircut risk and convenience yields? There are many reasons

to think that different maturities of US federal debt carried different haircut risks and “conve-

nience” (or “liquidity”) yields at different times during the 19th century. We address this by

packaging haircut risk and convenience benefits into a single time varying pricing kernel that

imposes that haircut risk and convenience benefits can vary across maturities but not across

bonds. This allows us to estimate the prices of risky government promises.

Q4. How should we handle periods that provide sparse or inaccurate macroeconomic data?

In principle, we could attempt to use historical macroeconomic data to estimate a model of

the stochastic discount factor that prices macroeconomic risks. However, we are skeptical

about the quality of 19th century macroeconomic data, especially at high frequencies. For

this reason, we estimate a model that doesn’t directly specify a pricing kernel process.
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3 Statistical Models

We consider the observed pattern in Figure 1 as representative of a prototypical historical

sample: sparse cross-sectional coverage at some periods with some maturities observed con-

tinuously for a long time. Positing that the yield curves at consecutive dates are correlated

with each other allows us to fill the gaps we do not know in the cross-section with information

we do know in the time dimension. To this end, we implement Dynamic Nelson-Siegel (DNS)

and Dynamics Nelson-Siegel-Svensson (DNSS) models as in Diebold and Rudebusch (2013).

These models have two characteristics that are important for us: (1) tight parametric struc-

tures in the cross-section that come from the parsimonious 3-factor Nelson and Siegel (1987)

or 4-factor Svensson (1994) yield curve parameterizations, (2) utilization of information in

the time dimension. While the original motivation behind the DNS and DNSS models was to

provide good yield curve forecasts, we are primarily interested in their attractive information

pooling properties.

In a departure from the literature, we add bond-specific pricing errors to the observation

equations of these models. We use this device because historical bonds, unlike Treasuries

issued after the 1920s, were not standardized, so the usual procedure of homogenizing the

sample before estimation is impractical. In subsections 3.1-3.4 we discuss a set of plausible

assumptions that provide alternative ways of parameterizing and pooling information about

the yield curve. In subsection 3.5 we evaluate these models based on their predictive accuracy.

3.1 Tight parameterization across maturities

Suppose that at time t we observe prices on an integer number Mt of coupon-bearing gov-

ernment bonds. A given bond, i, promises a sequence of gold dollar coupon and principal

payments m(i)
t := {m(i)

t+j}∞
j=1. We let p(i)

t denote the price of such a coupon-bearing gold dollar

bond in terms of gold. Let q(j)
t denote the gold price of a government promise to one gold

dollar at time t+ j. We call the sequence qt := {q(j)
t }∞

j=0 a discount function.

As is standard in the yield curve estimation literature, we start by assuming that the law
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of one price holds for a more or less homogeneous set of bonds. For each t ≥ 0 there exists a

discount function qt such that

p
(i)
t =

∞∑
j=1

q
(j)
t m

(i)
t+j =

〈
qt, m(i)

t

〉
.

This is a key identifying restriction: within each time period, there is a common discount

function that prices all bonds in our sample, i.e., there is no cross-sectional variation in how

promises of bond repayment are priced. Note that qt implicitly includes compensations for

haircut risks, convenience benefits or inflation risks so it should be thought of as the price of

a risky promise. Our specification allows these components to vary with the maturity j and

time t, just not by individual bond.

We parameterize the discount function qt by parameterizing the corresponding j-period

zero-coupon yields defined as y(j)
t := − log q(j)

t /j. We use a parametric family first proposed

by Nelson and Siegel (1987). As Diebold and Li (2006) argued, this family is flexible enough

to generate “typical yield curve shapes” (e.g., monotonic, humped, and S-shaped curves). To

us, a particularly attractive feature of this family is that it is compatible with estimates of

recent yield curves.2

(I). Nelson and Siegel (1987): The j-period gold dollar zero-coupon yield is

y
(j)
t = Lt + St

(
1− exp(−jτ)

jτ

)
+ Ct

(
1− exp(−jτ)

jτ
− exp(−jτ)

)

where Lt, St, and Ct are hidden factors that characterize the level, slope, and curvature of

the yield curve at time t and τ is a fixed parameter that identifies the location of a potential

hump in the forward yield curve.
2For example, Gürkaynak et al. (2007) use this form for the period 1961-1980. After 1980, they use an

extension proposed by Svensson (1994) to allow for a second hump in the yield curve.
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(II). Svensson (1994): The j-period gold dollar zero-coupon yield is

y
(j)
t = Lt + St

(
1− exp(−jτ1)

jτ1

)
+ C1,t

(
1− exp(−jτ1)

jτ1
− exp(−jτ1)

)

+ C2,t

(
1− exp(−jτ2)

jτ2
− exp(−jτ2)

)

where Lt, St, C1,t, and C2,t are hidden factors that characterize the level, slope, first curva-

ture, and second curvature of the yield curve at time t and τ1 and τ2 are fixed parameters

that identify locations of the first and second hump in the forward yield curve, respectively.

Introducing a low dimensional parameterization of the yield curve in the maturity di-

mension enables us to handle periods in which few bonds were traded. An alternative low

dimensional characterization of the yield curve would be a macroeconomic factor model, but

19th century macroeconomic data are not reliable enough for this.

3.2 Bond specific measurement errors

Researchers estimating the modern yield curve typically undertake a pre-selection exercise

to restrict their sample to a collection of bonds with relatively homogeneous characteristics.

Because our sample is sparse in the cross section, we cannot do that. Instead, we start

by including our full sample of bonds and introducing bond specific measurement errors, as

described in Assumption 1.

Assumption 1. Each bond i has a pricing error that is statistically independent from errors

on other bonds and has a time-invariant Gaussian distribution with mean 0 and standard

deviation σ(i)
m . The observation equation becomes:

p̃
(i)
t =

〈
q(λt, τ), m(i)

t

〉
+ d

(i)
t σ

(i)
m ε

(i)
t

where p̃(i)
t denote the observed period-t price of bond i in terms of gold and d(i)

t is the Macaulay
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duration of bond i in period t.

Introducing these measurement errors serves two purposes. First, it lets our model decrease

the influences of peculiar bonds on our yield estimates. This means that bonds that violate

our assumption that all bonds can be priced with a common discount function are given less

weight in interpolating across maturities. Second, bond specific measurement errors inform us

about situations in which our collection of assumptions prevents us from consistently pricing

a cross-section of bonds. Starting from a presumption that all bonds can be priced with a

common discount function, we look for patterns in estimated pricing errors, the idea being

that misjudgments in our bond classification will show up as large, cluster-specific relative

pricing errors.

This approach enabled us to uncover a “short-rate disconnect” in our historical sample,

meaning that pricing kernels that successfully price bonds at long maturities fail to price short

term bonds well. We deal with this misclassification by dropping prices of bonds that are less

than one year to maturity from our sample. In a companion paper, Payne et al. (2023), we

interpret the residual pricing errors on these short bonds as measuring a liquidity premium

on money-like federal liabilities.

3.3 Flexible parameterization across time

Because prior to World War I, price data are sparse and coverage varies over time, we use a

multilevel (a.k.a. an hierarchical) statistical model to efficiently pool information over time.

Let λt be a collection of time-varying yield curve factors: (Lt, St, Ct) for the Nelson-Siegel

yield curve, (Lt, St, C1,t, C2,t) for the Svensson yield curve. We assume that vector λt follows

the flexible stochastic process described in Assumption 2. This is in contrast with Gürkaynak

et al. (2007) who—for the years after 1960—estimate yield curves period-by-period, assuming

no intertemporal dependence among the elements of λt. But, it is similar in spirit to Diebold

and Li (2006) who introduce mean-reverting factor dynamics to evaluate the Nelson-Siegel

model’s forecasting ability.
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Assumption 2. Parameter τ is time-invariant. Parameter vector λt follows:

λt+1 = λ̄t + %(λt − λ̄t) + Σ
1
2
t ελ,t+1

where Σt is a covariance matrix with Σt = ΞtΩΞt, Ω is the time-invariant correlation matrix

and Ξt is a diagonal matrix containing marginal standard deviations σt that follow:

log σt+1 = log σt + Ξσεσ,t+1

where Ξσ is a positive definite diagonal matrix. In addition

λ̄t+1 =


λ̄t + Ξελ̄,t+1 if t = k∆ for k ∈ N

λ̄t otherwise

where Ξ is a positive definite diagonal matrix and ∆ ≥ 1 is the frequency at which λ̄t updates.

Shocks ελ,t, εσ,t, and ελ̄,t are Standard Normal for t ≥ 1.

Four features of this model characterize how information is pooled across time:

(i) Parameter matrix Σt governs how evidence about a yield curve at one date affects

inferences about yield curves at other dates. The closer are two dates to each other,

the more correlated are the associated yield curves, with Σt capturing what “close”

means.3 The limit Σ → 0 corresponds to complete pooling: here the yield curve is

assumed to be fixed over time so that each observation has equal influence with all

other dates. Contrary situations in which Σ → ∞ call for no pooling: so there is no

relationship between adjacent parameter estimates and we end up using only period t

information to estimate period t yield curve parameters as in Gürkaynak et al. (2007).
3One might be inclined to call this procedure “stochastic smoothing” because consecutive λt vectors are

linked by a sequence of random variables {ελ,t}. Alternatively, one could define a deterministic smoothing
function that specifies the sequence {λt} in terms of parameters λ0 and Σ, mimicking frequently used averaging
techniques such as a moving-average. Modeling the sequence {λt} as a stochastic process allows our algorithm
to deploy a much richer set of smoothing functions.
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By inferring Σ from the data, we learn how much pooling across time we should do

to improve estimates in light of intertemporal imbalances in data availability. In our

context, “stochastic volatility” means that the amount of pooling can be time varying

throughout the sample.

(ii) We allow shocks to different components of λt to be correlated. This enables us to infer

relatively precise estimates of short ends of yield curves throughout our sample period.

Assuming that different parts of the yield curve follow correlated but time-invariant

dynamics allows us to transmit what we learn about co-movements between short- and

long-term yields from times when many maturities are outstanding (as in the second

half of the 19th century) to times when data about short-term yields are scarce (as in

the early 20th century).

(iii) Yield curve parameter processes are decomposed into permanent and temporary com-

ponents: the vector λ̄t denotes a slow moving “long-run mean” to which λt reverts, and

the matrix % governs the rate at which this mean reversion occurs. We refer to λ̄t as a

“low-frequency” component and λt − λ̄t as a “temporary” component of λt. We impose

this structure to allow for potential mean reversion in the yield curve without imposing

a common mean across the entire period from 1791-1933.

(iv) The long-run mean λ̄t follows a random walk with updates at frequency ∆. As ∆→∞,

the frequency of parameter updates goes to zero, providing a state-space model with

time-invariant long-run mean λ̄. Setting ∆ > 1 to low values is a compromise between

identifying the long-run mean with high accuracy, on the one hand, and letting it move

over time, on the other hand. In effect, we divide the period of interest into subperiods

of equal length ∆ and assume complete pooling within subperiods and partial pooling

across subperiods. We set ∆ = 24 months as a compromise between identifying the

long-run mean with high accuracy and letting it move over time.
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3.4 A Nonlinear State Space Model of Bond Prices

Putting everything together, we can write our generic nonlinear state space model as:

p̃
(i)
t =

〈
q(λt, τ), m(i)

t

〉
+ d

(i)
t σ

(i)
m ε

(i)
t bonds

λt+1 = λ̄t + %(λt − λ̄t) + Σ
1
2
t ελ,t+1 yield curve parameters

log σt+1 = log σt + Ξσεσ,t+1 stochastic volatility

λ̄t+1 =


λ̄t + Ξελ̄,t+1, if t = k∆ for k ∈ N

λ̄t otherwise
long-run mean

with ε
(i)
t ∼ N (0, 1) ∀i, ελ,t ∼ N (0, I3) ελ̄,t ∼ N (0, I3) εσ,t ∼ N (0, I3) ,∀t ≥ 1

where p̃(i)
t denotes the observed period-t price of bond i in terms of gold.4 We estimate versions

of this state space model using Bayesian methods. In particular, we approximate posterior

probabilities by deploying Hamiltonian Markov Chain and No U-Turn sampler (HMC-NUTS).

The posterior distribution is constructed by adding up Gaussian log-likelihoods associated

with the independent shocks and combining them with priors, as described in Appendix A.

We specify weakly informative prior distributions for the model’s hyper-parameters for the

specific purpose of regularizing our estimator and facilitating smooth operation of the sampling

algorithm.

3.5 Horse Race

Our subsection 3.4 state space model combines a collection of potential ways to manage the

deficiencies of our historical data-set. In this subsection, we investigate which are impor-

tant. We study the following models that combine different parameterizations of the discount

function q with different assumptions on the way we pool information over time.
4We estimate parameters directly from bond prices adjusted by the bond’s duration as in Gürkaynak

et al. (2007). An alternative approach in the literature is to minimize yield errors. The two approaches are
conceptually equivalent but for reason we discuss in Appendix C found it more practical to minimize price
errors.
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Name Parameterization λ-dynamics stoch. vol. correlated shocks

Model A Nelson-Siegel random walk No No

Model B Nelson-Siegel random walk No Yes

Model C Nelson-Siegel random walk Yes Yes

Model D Nelson-Siegel mean-reversion Yes Yes

Model S Svensson random walk No Yes

Table 1: Models For Comparison

Conditional on q, the observation equations of these different models identical. The models

differ in their state equations, but all are special cases of the non-linear state space model in

Section 3.4. The first four rows of Table 1 are ordered to be increasing in complexity. We

do not include the Svensson model with stochastic volatility or mean reversion because the

complexity of this model appears prohibitively large relative to our limited data.

Comparison Approach: We want to compare these models based on their predictive perfor-

mances, not on their fits. This prompts us to use various cross-validation and information

criteria that are meant to approximate models’ predictive accuracies. In what follows, we

will use the Watanabe-Akaike Information Criterion (WAIC) proposed by Watanabe (2010),

which provides an approximation of the out-of-sample deviance, and the Pareto-Smoothed

Importance Sampling Cross-Validation (PSIS) of Vehtari et al. (2017), which provides an

approximation of the model’s cross-validation score.5 Both of these criteria are point-wise,

i.e., prediction is considered observation-by-observation, which means that they come with

approximate standard errors.
5These criteria are complementary to regularizing priors. Regularization reduces overfitting while predictive

criteria measure it. See also Gelman et al. (2014).
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Model WAIC s.e. ∆WAIC s.e. PSIS s.e. ∆PSIS s.e.

Model A 26156 233 5553 207 12922 109 2773 100

Model B 23107 225 2504 180 11417 125 1268 88

Model C 20602 289 0 - 10149 141 0 -

Model D 22282 258 1680 226 10997 111 847 108

Model S 20582 260 -20 196 10154 125 6 91

Table 2: Model Comparison

The first column provides the model label. The second and third columns depict the WAIC and associated
standard error. The fourth and fifth columns depict the difference from the WAIC of Model C and its
associated standard error. The sixth and seventh columns depict the PSIS and associated standard error.
The eighth and ninth columns depict a difference from the minimum PSIS and its associated standard error.
We highlighted in red the models that have the lowest WAIC and PSIS, within standard error.

Model selection: Table 2 compares performance of the models. Evidently, both criteria agree

that model C (Nelson-Siegel with random walk λ-dynamics, stochastic volatility, and cor-

related shocks) and model S (Svensson model with random walk λ-dynamics, no stochastic

volatility, and correlated shocks) are preferred to the other models. This indicates that adding

stochastic volatility to the standard Dynamic Nelson-Siegel improves its predictive accuracy

because it lets the degree of information pooling vary over time. In contrast, mean reverting

parameters are not called for in light of the additional complexity they introduce.

However, the criteria are unable to discriminate between models C and S because they

exhibit very similar predictive accuracy. We view the two models as capturing different fea-

tures of historical data. The Dynamic Nelson-Siegel model with stochastic volatility provides

flexibility in how to pool information over time, which turns out to be particularly important

during wars. The Dynamic Nelson-Siegel-Svensson model without stochastic volatility brings

more flexibility in fitting long maturities by allowing for a second hump that is largely indepen-

dent of the short end of the yield curve. From observed yields-to-maturity, we do see evidence

to suggest that there might be periods with a second hump at long maturities (greater than

15-20 years). However, the estimate of the Svensson model gives humps at approximately 1.4
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and 7.2 years, where the first hump is activated during the War of 1812 and the Civil War.

This makes us worry that the estimate of the Svensson model is overfitting short maturity

bonds during wars because the model does not allow sufficient flexibility in the amount of

information pooling during wars. An additional concern is that the second hump does not

actually help to fit the long end of the yield curve, which is its purpose. For these reasons,

we choose the Dynamic Nelson-Siegel model with stochastic volatility but without a second

hump.

4 Laboratory Experiment

The Nelson-Siegel parameterisation can capture a wide range of yield curve shapes. However,

as was shown in Figure 1, we want to infer yield curve parameters from relatively few price

observations, with most observed prices being for long term bonds. How can we recover short

yields? To show how pooling information over time can help with this matter, we conduct

the following “laboratory experiment”: taking a particular yield curve process (in line with

our Subsection 3.4 state space model) as given, we use it to price four bonds with known

characteristics (maturity, coupons, pricing error), then perform our econometric procedure,

and compare our posterior yield estimates to the “true” values used to generate our artificial

data. We investigate two situations:

Case 1: long term bonds with maturity dates that are distributed relatively evenly over the

sample period

Case 2: there is an extended period without bonds that mature in less than 10 years

We create bonds that are “representative” of our sample in the sense that originally they are

all long term bonds. Here information about short yields must be recovered from prices of

bonds that were originally long term but are now approaching maturity.

Rows of Figure 2 depict the outcomes of the two scenarios. The red lines are the true

1-year (middle column) and 10-year yields (right column) that were used to generate prices
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Figure 2: Comparison of Posteriors to True Values.

Artificial samples with 4 bonds (T = 20 year). Case 1: [top row] (i) 6 % (semi-annual), 10 year maturity,
σ

(i)
m = 3; (ii) 3 % (semi-annual), 20 year maturity, σ(i)

m = 2; (iii) 5 % (semi-annual), 30 year maturity,
σ

(i)
m = 1; (iv) 2 % (semi-annual), 40 year maturity, σ(i)

m = 4. Case 2: [bottom row] (i) 6 % (semi-annual),
25 year maturity, σ(i)

m = 3; (ii) 3 % (semi-annual), 33 year maturity, σ(i)
m = 2; (iii) 5 % (semi-annual), 30 year

maturity, σ(i)
m = 1; (iv) 2 % (semi-annual), 40 year maturity, σ(i)

m = 4.
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of the four bonds, the characteristics of which are depicted in the left column. The blue lines

depict the posterior median and the shaded blue area depicts the 90% interquantile range of

the posterior distribution. Even though we have few price observations for bonds with short

maturity, the algorithm still does a good job of recovering the true 1-year yield under the

first scenario (Case 1). Thus, at least when the common pricing kernel assumption is a good

description of the data, observing a few long term bonds is sufficient to recover the short end

of the yield curve as long as the maturity dates of the observed bonds are distributed relatively

uniformly over time. This is what our model’s ability to pool information buys us.

To illustrate this point, Case 2 represents a situation in which all four bonds mature after

20 years and shorter term securities are not issued in the meantime,6 so our model has little

chance to utilize information about short yields. The result is depicted in the bottom row

of Figure 2. Evidently, the algorithm can still recover the true 10-year yield (it can observe

bonds close to 10-years in the second half of the sample) but it has much more trouble

trying to recover the 1-year yield. The posterior 90% interquantile range is large, and the

posterior median departs significantly from the true value for many periods. This illustrates

that the structure of our Nelson-Siegel parameterisation does not automatically generate tight

posteriors. We do need some observations of prices for short maturity bonds to recover the

yield curve.

5 Fits

To demonstrate why we believe that our chosen yield curve model provides a reasonable

summary of the available bond price data, we now show that: (1) duration-weighted mean

absolute price errors are generally small for all bonds that we include in the estimation of yield

curves, (2) differences between observed and model-implied yields-to-maturities are small over

time and across maturities, and (3) yields-to-maturity of observed bonds concentrate around
6This situation describes the last decade of the eighteenth century well, during which we observe only the

three “Hamilton bonds.”
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our estimated par yield curves.

5.1 Small pricing errors across bonds

An important part of our approach is the assumption of bond-specific pricing errors. This

allows the algorithm to decide whether particular bonds are likely to violate the common

discount function assumption. The black crosses in Figure 3 depict duration-weighted mean

absolute pricing errors for each bond included in the analysis. They are computed as time

averages of absolute differences between observed prices and posterior median price forecasts

weighted by the inverse Macaulay duration. Evidently, our yield curves estimate prices of

included bonds fairly well, with similar errors across different bonds. This indicates good

in-sample fit and also that imposing a common discount function provides a good description

of the gold dollar bonds with maturities larger than 1 year.

Similarly, estimated standard deviations of bond-specific pricing errors, σ(i)
m , are also small.

The boxplots in Figure 3 depict summary statistics of corresponding posterior distributions.

The relative magnitudes of these estimates indicate how much particular bonds influence

estimated yield curves. Our algorithm assigns relatively less weight to bonds with large

estimated σ(i)
m values. Figure 3 shows that the set of bonds with relatively little influence

more or less coincides with bonds having the highest duration-weighted mean absolute pricing

errors.

5.2 Small yield errors over time and across maturities

Figure 4 depicts cross-sectional averages (over bonds for each month) of pricing errors, as

measured by the absolute difference between observed prices and posterior median price fore-

casts. The largest errors are associated with the War of 1812, the Civil War, and the First

World War. This suggests that our model struggles to price cross-sections of bonds during

wars.

To obtain a measure of fit with a more interpretable scale, we take the posterior median of
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estimation. Black crosses represent mean absolute price errors computed from the difference between
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Figure 4: Mean Absolute Pricing Errors

The black line depicts the cross-sectional average (over bonds for each month) of the absolute difference
between observed prices and posterior median price forecasts. The light gray intervals depict recessions as
dated by Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals
depict wars (from left to right: the War of 1812, the Mexican-American War, the Civil War, the
Spanish-American War, and World War I).
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our zero-coupon yield estimates, compute the implied yields-to-maturity for each bond at each

month, and compare them to the observed yields-to-maturity. The panels of Figure 4 report

different aspects of these yield errors. The left panel depicts distributions of yield errors for

specific maturity bins. We see that on average our parametric yield curve specification fits

observed yield-to-maturities well and without systematic differences across maturities larger

than 1 year. The right panel depicts cross-sectional means and standard deviations (over

bonds for each calendar year) of yield errors. The mean error stays close to zero and its

variation is also typically small but becomes relatively large during the early 19th century

and the Civil War, indicating that we have the most difficulty pricing the cross section of

bonds during those years.

5.3 Yields-to-maturity are close to estimated par yield curves

Another argument favoring the plausibility of our estimated yield curves is that Congress and

the Treasury often aimed to set coupon rates on new bonds so that initially they would sell

at par. That outcome would make their yields-to-maturities equal their coupon rates. This

practice implies that we should expect observed yields-to-maturities to be close to a so called

par yield curve: one that shows the required coupon rate for a bond with maturity j to sell

at par. This object is a non-linear, one-to-one function of the zero-coupon yield curve, so

we can use our estimated model to see how well observed yields-to-maturities line up with

estimated par yield curves, at least in “non-emergency” periods when issuing new bonds at

par was feasible.

The subplots of Figure 5 depict estimated par yield curves (orange lines) at dates that are

more or less representative of some sub-periods of our sample. Observed and model-implied

yields-to-maturities for the outstanding bonds are represented by blue dots and green stars,

respectively. The close proximity of dots and stars indicates that the fit of our model is quite

good across the whole maturity spectrum: our model is able to replicate a variety of yield

curve shapes and succeeds in capturing that yields at the long end of the maturity spectrum
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Figure 5: Par Yield Curve Estimates vs. Yield-to-Maturities.

The solid orange lines depict the median of our posterior for the gold dollar par yield curve at four specific
dates (in gray boxes). The light orange bands around the posterior median depict the 90% interquantile
ranges. Blue dots represent observed yield-to-maturities for bonds that are outstanding at the given period.
Green stars depict model implied yield-to-maturities for the same bonds–computed from the posterior
median price forecasts.
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are often lower than yields at medium horizons irrespective of how short-term yields behave.7

Moreover, comparing the blue dots to the estimated par yield curves illustrates that Congress’s

objective to sell bonds at par was often achieved (for example, see the subplots for 1805, 1821

or 1926).

6 Results

Figure 6 depicts our posterior probabilities for 2, 5, 10, and 15 year gold denominated, zero

coupon yields. The solid black and grey lines depict the median of our posterior estimate.

We use black for periods with price observations for bonds within the maturity range of the

plot, so in these regions our estimates can be regarded as interpolated yields. Otherwise,

we use grey. The bands around the posterior median depict 90% interquantile ranges. For

most of the sample, our yield estimates are remarkably tight, as indicated by the relatively

narrow posterior interquantile ranges. The interquantile ranges become large only for periods

in which our model resorts to interpolations (e.g. late 1820s for long term bonds, early 20th

century for short term bonds). During such subperiods, our estimates should be regarded

as tenuous. Even when we have enough data to interpolate, our model has more difficulty

estimating short-term than longer term yields. This is because some periods have relatively

few price observations for close-to-maturity bonds.

7 Concluding Remarks

We have compared applications of alternative statistical models of yield curves to an historical

data set that is sparse in the cross section, has bonds with peculiar features, and covers periods

with major policy changes and wars. Information and cross validation criteria suggest that a

Dynamic Nelson Siegel model with stochastic volatility and correlated shocks is a good model.

The model fits the data with small errors and performs well in a “laboratory experiment” in
7In other words, allowing for a “hump” in the yield curve is often necessary.
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Figure 6: Zero-Coupon Yield Estimates.

The solid black lines depict medians of our posterior estimate for the 2-year, 5-year, 10-year and 15-year zero
coupon yields. The bands around the posterior medians depict the 90% interquantile range. We use grey
lines for periods when the given maturity was not covered by observed maturities and so the estimate should
be thought of as an extrapolation. The light gray intervals depict recessions as dated by Davis (2006) for the
1796-1914 period and NBER recessions thereafter. The light red intervals depict wars (from left to right: the
War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, and World War I).
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which we generate data designed to mimic our historical sample of US federal bond prices.
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A Priors

Parameter transformation: The efficiency of the Hamiltonian Monte Carlo algorithm that

we will use to sample from our model’s posterior distribution is known to be sensitive to

parameterisation: the vector field that guides the sampler toward the “typical region” of

the parameter space is not invariant to re-parameterisation. Experimenting with alternative

parameterisations led us strongly to favor one that uses logarithmic transformations of the

(Lt, St, Ct) vector. However, simply using log(Lt, St, Ct) would implicitly force the level, slope,

and curvature factors to be strictly positive. To avoid this, we instead define the parameter

vector

λt := [log(Lt − λ), log(St − λ), log(Ct − λ)]′

where we set the lower-bound value, λ, sufficiently low so that the sampled {Lt}, {St}, and

{Ct} paths do not get close to their respective boundaries.8

Priors: Assumptions 2 give rise to a flexible model of the yield curve process that is pinned

down by a small set of hyper-parameters. A prior on τ and the initial (time 0) λ vector

that effectively determines an “average yield curve” for the whole sample period. We use

log-normal prior for τ and independent log-normal priors for the three entries of the initial λ

vector that implies the prior distribution for the initial yield curve shown in the left panel of

Figure 7. Our prior imposes a flat “average yield curve,” i.e., for all maturities the prior mean

is 10% with standard deviation of around 5%. Underlying priors are:

λ0,0 ∼ logN
(
10− β, 6

)
, λ1,0 ∼ logN

(
10− β, 6

)
,

λ2,0 ∼ logN
(
10− β, 15

)
, τ ∼ logN (60, 60).

8We set λ arbitrarily and check (ex post) whether the posterior sample contains any element that is in the
neighborhood of λ. If we find such an element, we redo the estimation with a lower value. For the results of
this paper, we use λ = −100.

31



Table 3: Summary of Data Sources

Series Period Frequency Source

Bond prices 1776-1839 M Razaghian (2002), Sylla et al. (2006) and Global Fi-
nancial Data.

1840-1859 M Razaghian (2002), The New York Times, and Global
Financial Data

1860-1925 M Commercial & Financial Chronicle, Global Financial
Data, Merchant’s Magazine, The New York Times, US
Treasury Circulars, and Martin (1886).

1925-1960 M CRSP US Treasury Database.

Quantities 1790-1871 Q Bayley (1882).

1872-1960 M U.S. Department of the Treasury (2015).

Contract Info. 1790-1960 1790-1871 from Bayley (1882).

1872-1960 from U.S. Department of the Treasury
(2015).

Gold/Goods 1800-1860 M Wholesale Price Index (Warren/Pearson)

Exchange Rate 1860-1913 M U.S. Index of the General Price Level (NBER Macro-
history: Series NBER 04051)

1913-2020 M CPI (BLS)

GDP 1790-2020 A Officer and Williamson (2021)

Gold/Greenbacks1862-1878 M Yale SOM ICF dataset

Exchange Rate
1 Repository for bond time series: https://github.com/jepayne/US-Federal-Debt-Public
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Figure 7: Implied Prior Distribution of the Initial Yield Curve and the 10-year Zero-Coupon
Yield.

The solid grey lines depict the mean, and dotted lines depict the 25% and 75% percentiles of the prior
distribution. Shaded areas represent interquantile ranges so dark areas are indicative of concentrated prior
probability.
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While the “average yield curve” influences our posterior distribution in the early part of the

sample, it is much less influential later due to the random walk component in λt. The right

panel of Figure 7 illustrates how the prior mean and “prior coverage bands” for the 10-year

yield grow over time. How much our prior for λ0 affects the posterior distribution for later

periods depends mainly on priors for {λ̄t}, %, and {Σt} that we specify as follows:

• For the correlation matrix Ω we use the LKJ prior with a concentration parameter η = 5,

which is a unimodal but fairly vague distribution over the space of correlation matrices.

For η values larger than 1, the LKJ density increasingly concentrates mass around the

unit matrix, i.e., favoring less correlation.9

• For the initial standard deviations σ0 we use independent log-normal priors: σi,0 ∼

logN (0.05, 0.1).

• We use common exponential priors on the standard deviation in the diagonal of Ξσ, with

the rate parameter tuned so that a priori the probability that σ(i)
σ > 0.15 is lower than

5%. The prior mean is 0.05.

• We use independent normal priors on the entries of %. The prior mean is chosen as a

diagonal matrix with diagonal entries [0.8, 0.8, 0.8] while we set the standard deviation

to 0.3 for all 9 entries of %.

• We use independent log-normal priors for the three entries of the initial λ0 (permanent

component of λ):

λ0,0 ∼ logN (10− λ, 6) , λ1,0 ∼ logN (10− λ, 6) , λ2,0 ∼ logN (10− λ, 15)

• We use common exponential priors on the standard deviation in the diagonal of Ξ, with

the rate parameter tuned so that a priori the probability that σ̄(i) > 0.15 is lower than

5%. The prior mean is 0.05.
9See Lewandowski et al. (2009). The LKJ distribution is defined by p(Ω|η) ∝ det(Ω)η−1. For η = 1, this

is a uniform distribution.

34



We use common exponential priors on the standard deviation of pricing errors, σ(i)
m , with the

rate parameter tuned so that a priori the probability that σ(i)
m > 30 is lower than 5%. Prior

mean is 10.

B Estimation I Details

Alternative to Particle Filtering: Estimating the model in Section 3.4 involves a complicated

filtering problem due to the non-linear nature of bond prices and the existence of stochastic

volatility. A standard approach to such non-linear filtering problems is to use some version of

particle filtering. However, thanks to the length and other complexities of our data set, well-

known drawbacks of particle filters, such as sample degeneracy and impoverishment, become

particularly acute in our case. We deploy an alternative strategy and approach the problem as

a high-dimensional statistical model that “treats latent variables as parameters.”10 From this

viewpoint, the model has more than 7, 500 parameters. To cope with such a high-dimensional

parameter space, we use Hamiltonian Monte Carlo with a “No-U-Turn Sampler” of Hoffman

and Gelman (2014), along with subsequent developments described in Betancourt (2018). The

basic idea is to use slope information about the log-likelihood to devise an efficient Markov

Chain Monte Carlo sampler. This method can attain a nearly i.i.d. sample from the poste-

rior by proposing moves to distant points in the parameter space through (an approximately)

energy conserving simulated Hamiltonian dynamic.

Computational issues: While Stan might seem an obvious choice for the task at hand—it is

a well-developed software that efficiently implements the HMC-NUTS sampler—non-trivial

features of our data set make it inconvenient for our purposes. Some of our main technical

difficulties are: (1) the number of observed assets changes over time, (2) each bond has a payoff

stream of varying length, (3) there are many periods without price observations, (4) the set
10We use quotation marks because in the Bayesian paradigm there is no clear distinction between latent

variables and parameters.
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of bond-specific pricing errors that are relevant at a given period t changes over time in a

complicated fashion, etc. To tackle these difficulties, we code the log posterior function of our

model from scratch and feed it into the DynamicHMC.jl package by Papp et al. (2021) which

is a robust implementation of the HMC-NUTS sampler mimicking many aspects of Stan. An

important advantage of this package is that it allows the user to provide the Jacobian of the

log-posterior manually. Not relying on automatic differentiation for a model with 7, 500+

parameters cuts running time by several orders of magnitude. In most cases, we use the

recommended (default) tuning parameters for the NUTS algorithm.

C Minimizing Price vs Yield Errors

We estimate parameters directly from bond prices adjusted by the bond’s duration as in

Gürkaynak et al. (2007). An alternative approach in the literature is to minimize yield errors.

The two approaches are conceptually equivalent but for the following reasons we found it

more practical to minimize price errors. Since zero-coupon yields are not directly observed,

minimizing yield errors involves first producing approximate zero-coupon yield observations.

To resolve this issue, Diebold and Li (2006) and Diebold et al. (2006) use the approximate

zero-coupon yields calculated by Fama and Bliss (1987) with their proprietary “bootstrap”

method. In principle, we could extend this methodology back through our historical sample.

However, we are concerned that the cross-sectional sparsity of our data-set will impair the

procedure’s accuracy. We see little benefit from introducing these complications since, unlike

Diebold and Li (2006) and Diebold et al. (2006), we include stochastic volatility. That would

make our model non-linear even if were to minimize yield errors. For these reasons we minimize

price errors.

As a robustness check, we minimize the difference between model implied and observed

yields-to-maturities. The results are shown in Table 4. We show that, as we had anticipated,

results are broadly similar to our estimates and have somewhat higher (within 2.5 standard

error) WAIC and PSIS than our chosen model.
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Model WAIC s.e. ∆WAIC s.e. PSIS s.e. ∆PSIS s.e.

Model C (price) 20602 289 0 - 10149 141 0 -

Model C (yield) 21053 271 451 213 10373 134 224 105

Table 4: Estimating Model C (Nelson-Siegel with random walk λ-dynamics, stochastic volatil-
ity, and correlated shocks) by minimizing duration-adjusted price errors (first row) vs by
minimizing yields-to-maturities (second row).
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