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Abstract

We provide the first consistent historical estimate of US Treasury funding advantage,
as measured by term structures of yield spreads between comparable highest-grade
US corporate bonds and Treasurys. We construct a new dataset with monthly prices,
cash-flows, and ratings for US corporate bonds over 1860-2024. We adjust yield curve
estimation techniques to account for tax treatments and embedded options. Existing
index-based spreads have mismeasured US funding advantage on long-term bonds in
the post-WWI period, particularly during high inflation episodes. An asset pricing
model for US funding advantage finds that standard risk factors, not quantity changes,
explain most variation in spreads.
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1 Introduction

Many researchers have argued that the US government enjoys a funding advantage: it can
issue bonds at lower interest rates than the private sector, even when the private sector
issues bonds that promise the same cash flow sequence. This matters because it allows the
government to sell debt that is not necessarily backed by future fiscal surpluses (a “non-
pecuniary” or “service flow” source of financing). In this paper, we revisit and expand
the historical evidence on US funding advantage, as measured by the spread between the
yields on the highest-grade US corporate bonds and Treasurys. In doing so, we uncover new
statistical properties of US funding advantage and show that many established “facts” reflect
mismeasurement rather than underlying economic relationships.

Formally, we estimate zero-coupon yield curves for highest-grade corporate and govern-
ment bonds that promise consistent pecuniary payouts and then compute US government
funding advantage as the corporate-to-government yield spread. This necessitates resolving
two main difficulties: (i) detailed bond-level price data for corporate bonds prior to the 1970s
has not previously been collected, and (ii) public and private sector coupon-bearing bonds
differ in their “characteristics”, which distort observed prices but do not necessarily reflect
the government’s funding advantage. To overcome the first difficulty, we construct a new
micro-level dataset with historical corporate bond price, coupon, and maturity information
from 1860-2024 that matches our existing datasets for Treasurys. This involves the digi-
tization of records from historical newspapers, business magazines, and company financial
reports. For bonds maturing after 1909, we use Moody’s credit ratings to classify default risk
while for earlier periods we use Macaulay (1938) to identify the highest quality issuers. With
some abuse of terminology, we refer to the yield spread estimated using Macaulay (1938)’s
highest-grade bonds and Moody’s AAA bonds as the AAA Corporate-Treasury spread.

To address the second challenge, we make adjustments to the estimated bond pricing
formulas to ensure like-for-like comparison between private and public sector bonds. One
set of adjustments relates to differential tax treatment. From 1913-1941 Treasurys were
typically exempt from Federal income taxation while corporate bonds were not. After 1941,
Federal income tax exemptions were removed but tax distortions none-the-less appeared
because capital gains received favorable tax treatment compared to capital losses and coupon
payments. There are important periods (e.g. 1955-1985) during which these capital gains
distortions were large and, on average, affected Treasurys and corporate bonds differently.
Another set of adjustments relates to differential option values. Between 1918 and 1971, the
Treasury issued a subclass of government bonds, known as “flower bonds”, which could be
redeemed to pay the bondholder’s federal estate taxes upon their death at par value rather
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than market value. This meant that flower bonds essentially provided a tax concession and
a put option, through the early redemption, that became more valuable during periods of
high inflation when bond prices fell well below par value. That is, they provided a hedge
against inflation risk. In addition, some Treasurys and most corporate bonds included call
options. All of these tax and option features bias standard yield curve estimation techniques.
We resolve this by parameterizing implicit tax and option distortions to adjust bond cash
flows. We then jointly estimate the distortions and zero-coupon yields by adopting and
extending the non-parametric approach from Filipović et al. (2022), which is chosen because
it achieves strong out-of-sample performance. Our approach identifies the tax and option
distortion parameters by exploiting the cross-sectional variation in tax treatments and option
moneyness across our sample.

Our new estimates allow us to infer a collection of stylized facts about relative government
debt prices and funding advantage. First, our long time series allows us to identify low
frequency movements in US government funding advantage that coincide with large changes
to financial sector regulation and the Federal Reserve’s large-scale bond purchase programs.
The US government gained a funding advantage well before Bretton Woods and global dollar
dominance with the introduction of the 1862-65 National Banking Acts that allowed banks to
create money so long as they backed the money with holdings of government debt (referred
to as a “circulation” privilege). The US government’s funding advantage on long-maturity
debt generally stayed high at around 1.5% throughout the National Banking Era (1865-1920)
before dropping sharply to around 0.5% in 1920 following the elimination of the National
Bank circulation privilege. It then followed a downward trend until the mid 1980s before
reversing course and increasing back up to around 0.5% in the 2000s. Quantitative easing
during World War II led to an increase in the funding advantage at short maturities while
quantitative easing after the 2007-09 financial crisis led to an increase at long maturities.

Second, we find that existing work has exaggerated the size of US funding advantage, par-
ticularly during the 1970s and 1980s when inflation risk was high. The most commonly used
existing measure for the US funding advantage on long-maturity securities is the spread be-
tween the Moody’s AAA corporate yield index and the Fed’s long-term bond index (which we
refer to as the “index-based spread”). This spread was used by Krishnamurthy and Vissing-
Jorgensen (2012) and has subsequently been adopted by many other papers. The indices
compute the average yield-to-maturity across bonds with a wide range of characteristics
which leads to large distortions to the spread in the 1920s, 1940s, and 1960-80s. The high
inflation period in 1970-80s offers a particularly revealing contrast: the funding advantage
reaches its maximum value in the late 1970s using the index-based spread (∼ 2%), while
it reaches its lowest value in the late 1970s using our estimates (∼ 0%). A key reason for
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the discrepancy is that the index-based measure includes yields-to-maturity on many flower
bonds and the flower put option became particularly valuable when bond prices dropped
below par during the high inflation period of the 1970s-80s. So the index-based spread is ef-
fectively a comparison between the average yield-to-maturity on nominal, callable corporate
bonds and the average yield-to-maturity on Treasurys with a put option against inflation
risk that traded like “real bonds”. We conclude that a large portion of the 1970’s variation
in the existing index-based AAA Corporate-Treasury series is attributable to the (negative)
inflation risk premia on flower bonds instead of a heightened funding advantage on regular
US Treasurys.

In Section 6, we use our new corporate and Treasury yield curve estimates to study how
US funding advantage is priced. We revisit the recent literature arguing that a debt-to-GDP
factor combined with independent demand shocks can forecast a large fraction of movements
in the AAA Corporate-Treasury spread on long-maturity bonds (e.g. Krishnamurthy and
Vissing-Jorgensen (2012) and subsequent papers). That is, debt “quantity” changes can
forecast “spread” changes. We use our new series for the AAA Corporate-Treasury spread
term structure to replicate and extend the regressions in the literature. In particular, we
estimate spread-quantity correlations within particular maturity bins and using aggregate
government debt. Our analysis shows that, within the different maturity bins, debt-to-GDP
increases forecast large spread declines for bonds with maturity less than 1 year, small spread
declines for bonds with maturity between 1-10 years, and no significant spread decline for
maturities greater than 10 years. In addition, aggregate debt-to-GDP is not a significant
factor for explaining spread changes across our full sample from 1860-2024 once we control
for regulatory regimes and volatility. These heterogeneous relationships suggest a more
complicated, maturity specific connection between quantities and spreads than has been
modeled by the literature.

To better understand how the government funding advantage is priced, we estimate a
richer factor asset pricing model that forecasts spreads with principal components of the yield
curves and government debt obligations while respecting no-arbitrage across time. Being able
to fit this model highlights the value of having estimated the term structure of government
funding advantage: we can use asset pricing tools to understand corporate-to-government
bond spreads. Our model finds that quantities explain little of the variation in spreads
(approximately 5-10%), reinforcing the findings from the regressions. Instead, the variation
is primarily explained by the same risk factors that appear in standard bond asset pricing
models. This suggests that the non-pecuniary benefit of US Treasurys is well explained by
standard asset pricing.

Finally, in Section 7 we return to the government budget constraint and show that the
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US government’s funding advantage has significantly contributed to its overall financing.
We first calculate the “ex-ante” backing of government debt obligations that comes from the
future non-pecuniary benefits of government debt. In the nineteenth century, non-pecuniary
backing was approximately 1.5% of GDP while in the twentieth century it was approximately
2% of GDP with peaks of 7% during World War II and 5% during the Global Financial Crisis.
We then calculate the “ex-post” fraction of total government revenue that has historically
come from the non-pecuniary benefit of government debt (through the funding spread on
new issuance and the revaluation of the premium on the stock of outstanding debt). This
shows that funding advantage was costly to establish at the end of the Civil War: the gov-
ernment absorbed capital losses when Treasurys started to trade at a premium. However,
it reaped significant benefits in the twentieth century when it was able to use its funding
advantage to finance crises. During WWI over 20% of the US government’s revenue came
from its funding advantage while during the Depression, the Financial Crisis and COVID
the contributions were 15%, 8%, and 7% of total revenue respectively.

Related literature: Our work extends studies on historical yield spreads (e.g. Fair and
Malkiel (1971), Cook and Hendershott (1978), Krishnamurthy and Vissing-Jorgensen (2012),
Nagel (2016), Choi et al. (2022),Cieslak et al. (2024)). Relative to the literature, we collect
new primary data and show how to adjust for tax and option treatments. Unlike some of
these papers, we do not attempt to estimate the spread between Treasury yields and the
expectation of the household SDF, which is sometimes referred to as the convenience yield.
Instead, we only focus on the funding advantage of the US government relative to the private
sector. For the modern period, there exist other high-quality estimates of the convenience
yield on US government debt (e.g., see van Binsbergen et al. (2022), Koijen and Yogo (2020)),
however, data limitations render them infeasible for our long time series.

Technically, our work is related to two literatures on yield curve estimation. The first
estimates zero-coupon yield curves using combinations of the law of one price and some
restrictions on the shape of the yield curve (e.g. Fama and Bliss (1987), Nelson and Siegel
(1987), Cecchetti (1988), Svensson (1995), Diebold and Li (2006), Gürkaynak et al. (2007),
Liu and Wu (2021), Filipović et al. (2022)). We adopt and adapt the Kernel Ridge regression
approach proposed by Filipović et al. (2022) to handle bond heterogeneity because it is
calibrated to achieve strong out-of-sample performance. Our tax and option adjustments
are related to a second literature that attempts to account for tax advantages and option
features in yield calculations (e.g. Robichek and Niebuhr (1970), Colin and Bayer (1970),
McCulloch (1975), Cook (1977), Cook and Hendershott (1978), Duffee (1996), Duffee (1998),
Elton et al. (2001)). Our contributions are: showing how to estimate implicit tax effects
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rather than inserting individually chosen tax rates, relaxing the assumption in the literature
that bonds are held to maturity, and integrating this literature with modern yield curve
estimation.

More broadly, our work is part of a literature attempting to connect historical time
series for asset prices to government financing costs (e.g. Payne et al. (2025), Jiang et al.
(2022), Chen et al. (2022)) We also complement the historical literature aimed at extending
historical financial time series further back in time (e.g. Homer and Sylla (2004), Goetzmann
et al. (2001), Reinhart and Rogoff (2009), Jordà et al. (2019), Schmelzing (2020), Officer
and Williamson (2021), and Carlson et al. (2022)). Like Ghaderi et al. (2025), we focus on
extending the available US historical corporate bond data.

The paper is structured as follows. Section 2 explains our conceptual framework. Section
3 examines our dataset, and details the institutional features driving bond heterogeneity that
our yield curve estimates must account for. Section 4 summarizes our statistical methodology.
Section 5 presents our estimate of the AAA Corporate-Treasury spreads. Section 6 constructs
an asset pricing model for the US funding advantage. Section 7 calculates the historical
contribution of convenience revenue. Section 8 concludes.

2 Conceptual Framework

In this section we define our notion of government funding advantage using a stylized model
and explain how it relates to the government budget constraint. We then discuss the diffi-
culties involved with attempting to use bond data to estimate the yield curves required to
calculate funding advantage.

2.1 Defining Government Funding Advantage

Consider a discrete time, infinite horizon economy with time indexed by t ∈ {0, 1, . . .}. The
economy contains a representative private sector investor and a government.

The government issues bonds with different cash-flow profiles none of which are subject
to default risk. Let Nt denote the set of government bonds outstanding at time t. Each
bond i ∈ Nt promises a sequence of coupons {cp

(j)
t,i }∞

j=1 and principal payments {pr
(j)
t,i }∞

j=1,
combined into the cash-flow stream ct,i := {c

(j)
t,i }∞

j=1 with c
(j)
t,i := cp

(j)
t,i +pr

(j)
t,i denoting period-t

promises of j-period-ahead dollars. These coupon-bearing bonds trade at prices pt,i and are
in positive net supply Bt,i, where Bt,i is the total amount (face value) of newly issued and
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outstanding bond i in period t. We assume the law of one price holds so that:

pt,i =
∞∑

j=1
q

(j)
t c

(j)
t,i , ∀i ∈ Nt, ∀t ≥ 0, (2.1)

where q
(j)
t denotes the price of a government promise to one dollar at time t+j with q

(0)
t = 1.

We call the sequence qt := {q
(j)
t }∞

j=0 the government’s discount function. We also assume
that the private sector issues bonds with a companion discount function q̃t := {q

(j)
t }∞

j=0. We
summarize this setup with the assumption below:

Assumption 1 (Law of One Price). Within each period t, there is a common discount
function qt pricing all government bonds and a common discount function q̃t pricing all
high-grade corporate bonds.

The basic premise of this paper is that when a private corporation issues default-free debt
that matches the cash-flow profile of government bonds, they may face a different discount
function q̃t ≤ qt. This means that the government can potentially sell a bond at a higher
price than the private sector, even when the bond promises the same cash flow stream ct,i

and the same default risk. We refer to the difference qt − q̃t as the premium on government
debt and refer to the government’s funding advantage as the term structure of highest-grade
corporate to Treasury yield spreads:

χ
(j)
t := 1

j
log

(
q

(j)
t

)
− 1

j
log

(
q̃

(j)
t

)
, ∀j ≥ 1, with χ

(0)
t = 0.

A common explanation for such a spread is because the representative investor receives
a non-pecuniary benefit from holding government debt due to higher liquidity, differential
regulation, market segmentation, or other reasons unrelated to the bond’s cash-flow stream.
Following the literature, we characterize this non-pecuniary benefit by imposing that the
elements of qt and q̃t solve the investor Euler equations ∀j ≥ 1:

q
(j)
t = Et

[
ξt,t+1Ωt,t+1q

(j−1)
t+1

]
, q̃

(j)
t = Et

[
ξt,t+1q̃

(j−1)
t+1

]
, with q

(0)
t = q̃

(0)
t = 1, (2.2)

where ξt,t+1 is the marginal investor’s stochastic discount factor (SDF) and Ωt,t+1 is a gov-
ernment debt specific wedge capturing the non-pecuniary benefit of government debt.

2.2 Connection to the Government’s Budget Constraint

We can use the government’s discount function to set up the government’s intertemporal
budget constraint. Using the law of one price (2.1), we can express the period-t market
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value of the government debt portfolio in the following (equivalent) forms:

∑
i∈Nt

pt,iBt,i =
∑
i∈Nt

∞∑
j=1

q
(j)
t c

(j)
t,i Bt,i =

∞∑
j=1

q
(j)
t

∑
i∈Nt

c
(j)
t,i Bt,i =:

∞∑
j=1

q
(j)
t b

(j)
t ,

where the last expression defines b
(j)
t := ∑

i∈Nt
c

(j)
t,i Bt,i as the number of t + j dollars that

the government has at time t promised to deliver. We call the sequence bt := {b
(j)
t }j≥1 the

zero-coupon equivalent government debt portfolio. Each period t, the government enters
with a stock of promised payments bt−1, spends gt, raises taxes τt and finances the resulting
deficit/surplus by “restructuring” its debt portfolio in the form of new issues of zero-coupon
bonds bt. It follows that the period t government budget constraint can be written as

b
(1)
t−1 + gt − τt =

∞∑
j=1

q
(j)
t

(
b

(j)
t − b

(j+1)
t−1

)

that is, period-t interest payments, b
(1)
t−1, and primary deficit, (gt − τt), must be funded

by refinancing the government debt portfolio at market prices {q
(j)
t }j≥1. This implies the

government’s borrowing costs can be fully characterized by the discount function qt.
We can now express the government’s budget constraint in terms of its funding advantage.

Iterating the government budget constraint forward gives the lifetime budget constraint
under the private sector’s stochastic discount factor (see Appendix A):

∞∑
j=1

q
(j−1)
t b

(j)
t−1 = Et

 ∞∑
s=0

ξt,t+s

(
τt+s − gt+s

)
︸ ︷︷ ︸

(i)

+
∞∑

j=1

(
q

(j)
t − q̃

(j)
t

)
b

(j+1)
t−1︸ ︷︷ ︸

(ii)

+ Et

 ∞∑
s=0

ξt,t+s


∞∑

j=1

(
q

(j)
t+s − q̃

(j)
t+s

)(
b

(j)
t+s − b

(j+1)
t−1+s

)︸ ︷︷ ︸
non-pecuniary revenue in period t + s


︸ ︷︷ ︸

(iii)

. (2.3)

This equation implies that the market value of outstanding debt (including interest pay-
ments) can be written as the sum of three components: (i) the present discounted value of
future primary surpluses, (ii) a term associated with the premium on the stock of existing
long-term government debt, and (iii) the present discounted value of the “non-pecuniary
revenue” the government earns from being able to issue new debt more cheaply than the
private sector. The second term would disappear if the government only issued one-period
debt. Evidently, holding all else equal, the fraction of the market value of government debt
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which is unbacked by future surpluses, i.e., the last two terms on the right-hand-side of (2.3),
is an increasing function of {χ

(j)
t }j≥1. In the special case of qt = q̃t, we obtain the result

that current debt must be fully backed by future primary surpluses.
From this discussion, we can see the importance of defining government funding advantage

by comparing discount functions on government and corporate bonds that are subject to the
same tax treatment and do not have options. In particular, tax exemptions on government
bonds can give rise to an observed spread but only because they decrease future tax revenues.
In this sense, they don’t contribute to the portion of government debt that is truly unbacked
by future surpluses.

2.3 Estimation Challenges with Heterogeneous Bonds

The goal of this paper is to estimate the term structure of the US government’s funding
advantage since 1860 by estimating the time series for the discount functions qt and q̃t. The
main difficulty is that commensurate private and public sector zero-coupon bonds are not
traded in large numbers. This means that the discount functions, qt and q̃t, must be inferred
from a sample of traded bonds with heterogeneous bond characteristics.

In the finance literature, two approaches have been used to estimate bond yield curves.
The first approach (e.g. Homer (1968) and Salomon Brothers (1988)) addresses the widespread
heterogeneity in bond markets by partitioning outstanding securities into well-defined sub-
classes based on characteristics such as maturity, coupon rate, callability, and tax treatment
and computes average yields-to-maturity for each subclass of like-for-like bonds. The main
advantage of this approach is that, in some cases, it allows for the isolation of price effects
associated with non-standard bond features, such as the call deferment period. Its draw-
back is that it restricts analysis to the small set of traded maturities rather than estimating
discount functions at all maturities.

The second approach, (e.g. Diebold and Li (2006), Gürkaynak et al. (2007), Liu and Wu
(2021), Filipović et al. (2022)), seeks to overcome this limitation by interpolating across non-
traded maturities to estimate the entire discount function. Specifically, this literature aims to
estimate a smooth discount function, q ∈ Q, from a suitably chosen set of functions Q. The
objective is to ensure that implied bond prices—given by the law of one price condition as
in Equation (2.1)—closely match observed market prices, with any residuals being regarded
as noise. A key prerequisite for the validity of the second approach is the existence of a
homogeneous sample of regular bonds, for which it can be reasonably assumed that price
differences arise solely from variations in coupon rates and maturity. Naturally, this approach
imposes strict selection criteria—for example, excluding all bonds with embedded options—
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and primarily focuses on the past few decades, characterized by “regular and predictable” US
Treasury issuance. As we show in Section 3, applying similar selection criteria throughout
our long sample leaves us with too few bonds to undertake yield curve estimation.

To overcome these difficulties, this paper bridges the gap between these two traditions
by incorporating bond heterogeneity into the estimation of discount functions. When bonds
differ in characteristics beyond their promised cash flows—such as tax exemptions or option-
like features—the law of one price (Assumption 1) necessitates the inclusion of distortions
in the pricing formula (2.1) that capture the price effects associated with specific bond
attributes. For government bonds, they generalize the bond pricing formula as:1

pt,i =
∞∑

j=1
q

(j)
t z

(j)
i (θt, pt,i)c(j)

t,i︸ ︷︷ ︸
tax-adjusted fundamental value

+ vi(θt, pt,i)︸ ︷︷ ︸
option value

(2.4)

where zi(θt, pt,i) := {z
(j)
i (θt, pt,i)}j≥1 represents tax distortions, such that the first term on

the right hand side of (2.4) represents the bond’s “fundamental value”, while vi(θt, pt,i) can
be thought of as the value of embedded options. These distortions can depend on a set of
parameters capturing bond characteristics, θt, and potentially on the bond’s price. We define
zt,i to capture the bond and maturity specific effects of tax distortions, measured relative to
a reference discount function qt that is common across all bonds. We choose the reference
discount function to be the function that would be inferred from tax-unadjusted cash-flows if
the sample included bonds with homogeneous tax treatments (i.e. when the tax distortions
are independent of i and j; see Appendix E.1 for a formal definition). This is the same
discount function that the modern yield curve estimation literature attempts to estimate
(e.g. Gürkaynak et al. (2007)).

At this level of generality, the crucial point to recognize is that, in the presence of bond
heterogeneity, estimating discount functions without accounting for such pricing distortions
can introduce significant bias.2 Using (2.1) instead of (2.4) effectively forces the estimator
to treat all price differentials as arbitrage to be eliminated, even though some observed
price discrepancies stem from valuable tax advantages and option features. By contrast,
the pricing formula (2.4) introduces discounting factors, composed of a common component
qt and bond-specific components zt,i and vt,i, that can explain price differentials. Imposing
structure on the bond-specific components—guided by tax legislation and option pricing
theory—enables us to leverage a heterogeneous bond sample to estimate the equilibrium qt

1A similar expression holds for high-grade corporate bonds with discount function q̃t.
2The issue is analogous to the omitted variable bias: if, at a given period t, the distortions zt,i and vt,i

correlate with the bond price, pt,i, omitting them leads to biased estimates of qt.
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as the common component without the influence of tax effects and option-like features. In
Section 3, we examine the historical context and institutional details to identify important
tax effects and embedded options that the distortions (zt,i, vt,i) can represent.

3 Data and Institutional Details

In this section, we discuss our new bond dataset, which overcomes a major practical chal-
lenge with estimating government funding advantage: detailed bond-level price data for
high-grade corporate bonds has not previously been collected before the 1970s. We then de-
scribe the heterogeneous characteristics of the bonds in our sample, highlighting how these
characteristics create challenges for measuring the government funding advantage.

3.1 Our Dataset

High-grade Corporate Bonds: We construct a new historical dataset of US corporate
bonds covering the period 1840–2024, providing monthly data on trading prices, cash flows,
and bond characteristics such as maturity, credit rating, and callability. The dataset inte-
grates several existing databases with hand-collected prices and bond characteristics from
historical newspapers, business magazines, and corporate financial statements. For the early
period, we gather prices primarily from the New York Times (1851–1973), Commercial &
Financial Chronicle (1886–1963) and Barron’s Magazine (1942–1973). Credit ratings and
bond characteristics are primarily obtained from Moody’s Manuals, published since 1900.
From 1974 onward, we rely on the Lehman Brothers Fixed Income Database (1974–1997)
and the Merrill Lynch Bond Index Database (1998–2024). Appendix C.1 provides details on
the corporate bond data sources and construction.

We limit our sample to the period 1860–2024 to have sufficient price observations and
focus on highest-grade corporate bonds to minimize default risk. To classify bonds as highest-
grade, we primarily rely on annual Moody’s credit ratings, which became available in 1909,
and restrict our sample to AAA-rated bonds. For bonds maturing before 1909, we follow
Macaulay (1938) in identifying highest-quality issuers, relying on the selection of railroad
companies included in his highest-grade railroad bond yield index. Additional details on
bond selection and credit ratings are provided in Appendix C.1.3.

US Government Bonds: Our dataset on US Treasury debt combines the comprehensive
monthly panel of prices and quantities for all Treasurys from 1790–1925 constructed by Hall
et al. (2018) and utilized in Payne et al. (2025), with the CRSP Treasury Database (1925-
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2024). We exclude the Treasury Inflation-Protected Securities (TIPS) from our sample, but
we keep bonds with varying tax exemptions and bonds with embedded call and put options.
Appendix C.2 provides further details on the construction of the Treasury bond sample.

3.2 Bond Characteristics with Price Effects

In this section we highlight five key bond features that create pricing differences between
otherwise “equivalent” corporate and government bonds unrelated to funding advantage:
tax exemptions, low coupon rates, estate tax treatments (“flower bonds”), callability and
exchange privilege. Table 1 summarizes the characteristics, necessary adjustments to the
pricing formula (2.4), and the periods of greatest relevance.

Feature Summary Sample Effect on
Yield

Period

Tax Exemption Reduced federal income tax
rate on interest income Gov y ↓ p ↑ 1917–41

Low Coupon Income mainly from capital
gains with low tax rate Both y ↓ p ↑ 1955–85

Flower Bond Valued at par for estate
taxes upon death Gov y ↓ p ↑ 1970s

Call Option Issuer has the right to refi-
nance at call price Both y ↑ p ↓ ‘30s,‘90s

Exchange Privilege At maturity exchangeable
for new issue premium bond Gov y ↓ p ↑ 1930s

Table 1: Bond Characteristics with Price Effects

3.2.1 Tax Advantages

Tax exemptions on US Treasurys: Before the introduction of US federal income taxation in
1913, neither corporate nor government bonds were subject to taxes.3 Since then, income
earned by both corporations and individuals from long-term securities holdings has been
subject to two types of taxes.4 Coupon payments are taxed at the relevant (holder-specific)
marginal income tax rate τ inc. In addition, capital gains are taxed at the long-term capital

3The Sixteenth Amendment to the Constitution was announced on February 25, 1913 and the new Federal
income-tax law in pursuance of this amendment was enacted on October 3, 1913.

4In addition, since 1916, all bonds were subject to estate taxes except for the so called flower bonds,
shown by the light shaded areas in Figure 1.
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gains tax rate τ cg while capital losses can be deducted against ordinary income and are thus
valued at the ordinary income tax rate τ inc.

From WWI in 1918 to WWII in 1941, the Treasury issued both fully and partially tax-
exempt bonds. While fully-taxable bonds were subject to normal income taxes and surtaxes
(e.g. war and excess profits taxes), partially tax-exempt bonds were only subject to surtaxes
and tax-exempt bonds were not subject to either income taxes or surtaxes.5 Over this period,
the gap between tax rates τ inc and τ pte was around 3%.

Figure 1 depicts the share of outstanding marketable Treasury bonds and notes (excluding
T-Bills and Certificates of Indebtedness) classified by tax-treatment for the sub-period 1900-
2024. From the introduction of income taxation 1913 until WWII in 1941, US federal
government bonds were (either partially or fully) exempt from federal income taxes while
corporate bonds were fully taxable. This created an obvious tax advantage for US Treasurys.
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Figure 1: Share of Outstanding Treasury Bonds and Notes with Tax Exemptions.

Notes: Excluding T-Bills and Certificates of Indebtedness. Different colors represent the tax treatment of
each issue.

We can gauge the approximate price impact of this exemption by analyzing the early
1940s, a period during which taxable, partially tax-exempt, and fully tax-exempt bonds
were traded concurrently. The middle panel of Figure 2 illustrates the yields-to-maturity
across various maturity horizons for taxable, partially tax-exempt and fully tax-exempt gov-
ernment bonds outstanding in September 1942. The plot highlights that the price impact of

5Treasury Secretary McAdoo advocated for the creation of partially tax-exempt bonds as a means of
stabilizing interest rates, which were increasing as surtaxes increased. He wanted to create a class of bonds
to be held by households, rather than by banks who bought up tax-exempt debt to avoid their relatively
higher tax burden.
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Figure 2: Price Implications of Tax Advantages.

Notes: Panels depict yields-to-maturity (y-axes) against years-to-maturity (x-axes) for government bonds
on different dates (panel title). Each circle/square corresponds to a separate bond outstanding in the given
month. Dots show non-callable bonds, squares represent callable bonds.

federal income tax exemptions was substantial. Notably, at the five-year horizon, tax-exempt
bonds earned yields approximately 80 basis points lower than those of taxable bonds with
comparable coupon rates and maturities. For longer maturities, the effect was even larger.

Capital Gains Tax Advantage on Low Coupon Bonds: The holding period return of a bond
with coupon cpi consists of two components: the coupon yield, cpi/pt,i, and capital gains
or losses, pt+1,i/pt,i − 1. In equilibrium, (risk-adjusted) after-tax holding period returns are
equalized across all outstanding bonds so—all else equal—bonds with lower coupon yields
must trade at lower prices and earn higher capital gains.

As long as the taxation of coupon income and capital gains or losses remains symmetric,
the equilibrium relationship between coupon rates and the proportion of income derived from
capital gains has no direct impact on bond yields. In particular, capital losses are taxed at
the same rate as coupon income and are amortized each period. Consequently, in periods
dominated by capital losses, the tax treatment remains uniform across bonds (see Appendix
E). A salient example is the 1985–2022 period, when most bonds were trading well above
par and so the market understood there would be future price decreases back to par. The
left panel of Figure 2 depicts the term structure of yields-to-maturity for a representative
month within this interval. Evidently, despite the presence of taxation, the resulting price
effects are strikingly homogeneous across the bond sample.

On the other hand, since 1921, the US tax code has consistently favored long-term capital
gains over interest income by setting τ cg < τ inc and by deferring capital gains taxation
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until realization (potentially until maturity). Consequently, low-coupon bonds—those with
coupons below the prevailing market interest rate—were subject to a lower effective tax rate
than high-coupon bonds. The price impact of this “capital gains tax advantage” became
particularly evident in the period from 1955-1985, when rising interest rates caused low-
coupon bonds issued in the 1950s to trade at deep discounts relative to par and so the
market understood there would be future price increases as they reverted to par at maturity.
The right panel of Figure 2 illustrates the corresponding coupon-rate effect on observed
yields-to-maturity: in February 1968 bonds with the lowest coupons (blue dots) exhibited
yields nearly a full percentage point lower than those with the highest coupons (red dots).

3.2.2 Embedded Options

Estate tax provisions (“flower bonds”): Between 1918 and 1971 the government issued a
subclass of bonds, known as “flower bonds”, which could be used to pay the bondholder’s
federal estate taxes upon their death at par value (instead of market value) plus accrued
interest. Moreover, prior to 1976, flower bonds were valued as inherited property at their par
value on the date of the decedent’s death, effectively exempting them from long-term capital
gains taxes when they were redeemed early for estate tax purposes. This capital gains tax
exemption was terminated by the Tax Reform Act of 1976, which passed in October 1976.

Figure 1 shows that flower bonds were a significant subset of Treasury securities during the
early decades of the post-WWII period. Importantly, from 1955-1971, almost all outstanding
Treasurys with maturity greater than 10 years were flower bonds (see Appendix G.2.3). After
March 1971 Congress stopped issuing bonds with flower bond privileges, ensuring a gradual
reduction in their overall supply as outstanding issues matured or were used for estate tax
purposes and progressively retired over time.

In practice, the flower bond provisions meant that they effectively acted as an inflation
hedge. Rising inflation expectations would drive up interest rates, which, all else equal,
would decrease bond market prices relative to their par value. This decline, in turn, would
increase the value of both the flower bond privilege to offset estate taxes at par and the
flower bond capital gains tax advantage. Indeed, the redemption of flower bonds increased
during periods of high inflation. In this way, flower bonds contained an “inflation hedge” or
“inflation put option” and so traded more akin to inflation protected bonds than nominal
bonds.

To illustrate the importance of the flower bond price distortions, on the left panel of
Figure 3, we show yields-to-maturity for flower bonds (in red) and non-flower bonds (in
black) for the month of August 1976, a period with high inflation. Evidently the flower bond
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provisions had a significant price impact. For longer maturities, the flower bond yields-to-
maturity are 1-3 percentage points below yields-to-maturity of comparable non-flower bonds
(the black dots) and appear to follow a downward sloping yield curve.
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Figure 3: Price Implications of Embedded Options.

Notes: Panels depict yields-to-maturity (y-axes) against years-to-maturity (x-axes) for different dates
(panel title). Each circle/square corresponds to a separate bond outstanding in the given month. Red color
represents “flower bonds”, black color is for regular taxable bonds. Dots show non-callable bonds, squares
represent callable bonds.

Call provisions: Many government and corporate bonds contained call provisions, which
grant the issuer the right to repurchase its bond before its maturity at a prespecified “call
price”. Call provisions give positive option value to the issuer but introduce cash flow uncer-
tainty for bondholders and so typically trade at a discount compared to otherwise identical
non-callable bonds. Because issuers are expected to call bonds when their market price suffi-
ciently exceeds the call price, the call option discount tends to be high when bond prices are
high. Call provisions are accompanied by a call-deferment period—a predetermined time-
frame after issuance (but before maturity) during which the issuer cannot call the bond.
Intuitively, the size of the discount investors demand for holding callable bonds is inversely
related to the call price and the length of the call-deferment period.

Figure 18 in Appendix D.1 shows that a large proportion of government bonds were
callable until the 1960s and a large proportion of corporate bonds were callable throughout
our sample, except for the early 2000s. Prior to the 1960’s, callable highest-grade corporate
bonds typically had very brief call-deferment periods. Most were callable on any interest
payment dates with notice periods typically ranging from 30 to 60 days. The other bonds
generally only provided a little more protection, with call deferment periods typically around
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five years. In contrast, callable US government bonds typically featured 3-6-month notice
periods along with long call-deferment periods often only a few years shorter than the bonds’
maturity.

To illustrate the price implications of call options, the middle panel in Figure 3 shows
yields-to-maturity for callable (squares) and non-callable government bonds (dots). Evi-
dently, the value of call options was relatively large in March 1995 resulting in a visible
divergence between the term structures of yields-to-maturity of callable and non-callable
bonds. Appendix Section D.1 provides further details on differences in call features between
corporate and government bonds.

Exchange Privilege: During the 1930s, interest-bearing US debt nearly doubled, placing
substantial pressure on the US Treasury to allocate newly issued securities to the private
sector. This challenge was further exacerbated by legal constraints that prohibited the
issuance of new government debt securities below par value.6 In response, as explained by
Cecchetti (1988), the US Treasury began issuing new bonds with coupon rates implying
market prices above par value, yet these bonds were sold at par. Holders of maturing
government bonds and notes received preferential treatment in the allocation of these new
issues, creating a valuable “exchange privilege”: upon maturity, coupon-bearing Treasury
securities could be exchanged for new bonds at par, which subsequently traded above par.

The value of this exchange option exerted significant downward pressure on the yields of
coupon-bearing government bonds. In fact, throughout the 1930s, the yields of bonds nearing
maturity often turned negative. The right panel in Figure 3, depicting yields-to-maturity
for outstanding government bonds in May 1936, is a representative example. Except for the
zero-coupon T-Bills (that did not have the exchange option), all bonds less than 18 months to
maturity appear to have offered a negative yield-to-maturity! According to Cecchetti (1988),
the value of the exchange privilege was non-trivial throughout the early 1940s. While the
practice of exchange continued beyond 1944, the terms were no longer as favorable and the
value of the exchange option disappeared.

3.3 Implications for US Treasury Funding Advantage Measures

The bond-specific features discussed in Subsection 3.2 potentially lead to distortions in the
estimation of government funding advantage. To illustrate this, Figure 4 plots the yields-
to-maturity for both government and corporate bonds in January 1976, a period of high

6The Second Liberty Bond Act required that new Treasury bonds and certificates of indebtedness be
issued at par and new notes issued at not less than par.
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inflation. It also depicts a collection of spreads that tell very different stories about gov-
ernment funding advantage. The spread between long-term non-flower bond yields and
long-term corporate bond yields (20-30 years maturity), which we interpret as a reasonable
approximation to the undistorted spread, is relatively small at approximately 55 basis points.
By contrast, the spread between long-term corporate bonds and flower bonds, which we in-
terpret as highly distorted by flower bond privileges, is very large at approximately 297 basis
points.
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represents “flower bonds”, black color is for regular taxable bonds. Dots show non-callable bonds, squares
represent callable bonds.

Finally, we also depict the most widely used measure of historical government funding ad-
vantage on long-maturity bonds (initially proposed by Krishnamurthy and Vissing-Jorgensen
(2012) and subsequently used in many papers), which is computed as the difference between
two yield indices:

• Moody’s Seasoned AAA-rated long-maturity corporate bond index (FRED code: AAA)—
constructed from a sample of industrial and utility bonds (industrial only after 2002)
with more than 20 years to maturity, and

• The Federal Reserve Bulletin’s long-term US government bond yield index (FRED
code: LTGOVTBD)—constructed as the average yield on all outstanding government
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bonds neither due nor callable in less than 10 years.7

For brevity, we will call this the index-based AAA Corporate-Treasury spread throughout
the paper. The green and orange dashed lines on Figure 4 plot the Moody’s index and the
LTGOVTBD series values in January 1976 respectively. We also depict the index-based
spread between these lines, which, like the flower bond spread, is very large at 186 basis
points. This is because the LTGOVTBD series averages over flower and non-flower bonds,
and there are sufficiently many flower bonds still outstanding in 1976 to distort the average.
In this sense, the index-based spread includes the value of flower bond privilege and so
significantly overstates the government’s funding advantage.

4 Estimation Methodology

In this section, we describe how we estimate the term structure of the US government’s fund-
ing advantage, while controlling for the tax and option-related distortions outlined in Section
3. Section 4.1 first describes how we correct for the distortions by specifying functional forms
for the tax adjustment term zi(θt, pt,i) and the option value vi(θt, pt,i) that draw on tax legis-
lation and option pricing theory. Section 4.2 then outlines a yield curve estimation strategy
using Kernel Ridge regression (as in Filipović et al. (2022)) to estimate zero-coupon yield
curves for both corporate and Treasury bonds.

As a sense check for our estimation, we establish a rough “benchmark” by constructing
an index-based spread using a restricted sample of “standard” bonds that are not or only
minimally affected by tax advantages or option features. This approach aligns closely with
Salomon Brothers (1988) and Homer and Sylla (2004), as it averages yields-to-maturity
within narrowly defined groups of bonds at specific maturities. This approach offers a natural
sense-check because it addresses bond heterogeneity without needing to model distortions.
However, it is insufficient to estimate a full term structure because there are many historical
periods with insufficiently many “standard” bonds to construct an index-based spread using
only these bonds and yields-to-maturity are not suitable for pricing bonds with different cash
flow profiles. Instead, we integrate the selection-based index spread with the Kernel Ridge
regressions by treating the former as an “anchor” that informs the shape and level of the
estimated yield curves.

7More precisely, the Treasury bonds included are due or callable after 12 years for 1926–1941, 15 years
for 1941–1951, 12 years for 1952, and 10 years for 1953–1999. The series was discontinued in 2000, after
which point papers in the literature use the “market yield on US Treasury Securities at 20-year constant
maturity” (FRED code: GS20).
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4.1 Adjustments For Bond Heterogeneity

4.1.1 Tax Distortions

The modern yield curve literature has largely overlooked taxes and used the unadjusted
law-of-one-price formula (Equation (2.1) in Section 2), to estimate discount functions from
future cash flows. This approach implicitly assumes that price errors—defined as the differ-
ence between observed prices and those implied by Equation (2.1)—are invariant to taxes.
This assumption would be true if bonds were restricted to a sample with homogeneous tax
treatments so that the price effect of taxes is not maturity or bond specific (i.e., not indexed
by i or j in our notation). In this case, taxes simply rescale the yield curve and so can be
imposed after the discount functions have been estimated. We refer to this as the estimation
being scale-invariant to taxes. In Appendix E.1, we show that this scale-invariance property
holds when (i) the tax rate is common across all bonds, (ii) capital gains and capital losses
are taxed each period, and (iii) coupon income, capital gains, and capital losses are all taxed
at the same rate. When these conditions are not satisfied, standard yield curve estimation
procedures will generate systematic patterns in price errors that reflect heterogeneity in tax
treatment.

Section 3 demonstrated that these criteria are not generally met in our historical sample.
Before World War II, condition (i) is violated because of heterogeneous tax exemptions on
government bonds (as illustrated in the middle plot of Figure 2). After World War II, tax
rates on new issues of government bonds become homogeneous but the second two conditions
remain as issues because capital gains taxes are lower and can be deferred. From 1955-85,
bonds primarily earned capital gains and so the distortions were large (as was illustrated
in the right plot of Figure 2) while for 1985-2022, bond primarily earned coupon yields and
so the distortions were small (as was illustrated in the left plot of Figure 2). This makes it
essentially impossible to ignore taxes by restricting our historical sample to bonds without
tax distortions. Instead, we need to find a way to correct for such tax distortions.

Consider a bond with maturity Mt,i, market price pt,i, and yield-to-maturity ŷt,i. Let
the marginal income tax rates on fully taxable, partially tax-exempt, and fully tax-exempt
government bonds be τ inc, τ pte, and τ fte, respectively, and let τ cg be the long-term capital
gains tax rate. Our observations about the tax code suggest that the tax distortion z

(j)
t,i on

bond i at maturity j should depend upon the relative tax concession on the bond, the extent
to which bond holders can defer capital gains, and the relative tax concession on capital
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gains. This motivates the following form for the tax adjustment factor:

z
(j)
t,i ≈ exp

(
ηi

t,0ŷt,ij
)

︸ ︷︷ ︸
tax exemption

exp
(

− ηt,1 (Mt,i − j) ŷt,i

)
︸ ︷︷ ︸

tax deferral discount

1 + ηt,2

j∑
s=1

max
{

p̂t+s,i

p̂t+s−1,i

− 1, 0
}

︸ ︷︷ ︸
adjustment for capital gains︸ ︷︷ ︸

capital gains tax advantage

(4.1)

where ηi
t,0 := (τ inc − τ i)/(1 − τ i) for i ∈ {inc, pte, fte} is the relative tax concession on the

bond, (ηt,1, ηt,2) parametrizes the capital gains advantage, and p̂t+s,i is the expected price for
bond i at period t + s.8 The first term in equation (4.1) rescales the cash flows to account
for any differences between bond i’s tax rate and the income tax rate. Since ηinc

t,0 = 0, the
first “tax exemption” term is only relevant for government bonds and only before the 1950s
(see Figure 1). Moreover, for the 1917-1960 Treasury sample, we can infer ηpte

t,0 and ηfte
t,0 from

directly comparing yields-to-maturity on outstanding fully taxable, partially tax-exempt,
and fully tax-exempt bonds that are traded well above par.9

The other terms in equation (4.1) rescale the cash flows to account for the tax advantage
on any capital gains earned while holding the bond. The third term computes the expected
future capital gains while the second term discounts the future capital gains advantage back
to time t + j. This means that the parameters (ηt,1, ηt,2) can be interpreted as characterizing
how much to discount the future capital gains tax advantage given the investor’s holding
period and the magnitude of the tax advantage when those capital gains are realized. Since
we cannot directly infer (ηt,1, ηt,2), they are the tax effect parameters we need to estimate.

By inspection, we get that z
(j)
t,i = 1 when bond i has no tax exemption, sells at or above

par, and its premium is amortized every period. This means that our estimation approach
reduces to the standard literature approach of estimating the unadjusted law-of-one-price
formula (2.1) during periods where the conditions for scale-invariance are satisfied (e.g.
1985-2022) but activates additional complexity when the conditions are not satisfied (e.g.
1955-1985). In Section 5.3 we show that (4.1) leads to unbiased price errors and improves the
fit during periods with tax exemptions and large capital gains. This suggests that formula
(4.1) successfully captures bond-specific tax distortions relative to the common reference
discount function qt.

Our formula can be thought of as a generalization of the approach in the micro tax-
8We approximate expected bond price trajectories using those implied by the yields-to-maturity ŷt,i.

These can be derived from the recursion: p̂t,i = exp(−ŷt,i)(cpi + p̂t+1,i) with boundary conditions p̂t+Mi =
100, and p̂t,i = pt,i.

9From 1917-1941, we don’t observe fully-taxable Treasury bonds. Since partially tax exempt bonds were
subject to federal income taxes less the normal income tax, we set τinc = τpte + .03 during this period,
following our discussion in Section 3.2.1.
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based asset pricing literature (e.g. Robichek and Niebuhr (1970), Colin and Bayer (1970),
McCulloch (1975), Cook and Hendershott (1978)). This literature computes after-tax yields
using variants of the following asset pricing formula:

pt,i =
Mi∑
j=1

q
(j)
t (1 − τ i)cpi+

+ q
(Mi)
t

[
100 − τ i min{100 − pt,i, 0} − τ cg max{100 − pt,i, 0}

] (4.2)

where {q
(j)
t } denotes the after-tax discount function. The literature has used this formula

by substituting in observed bond prices, coupon rates, and various IRS tax rates based on
the judgment of the different researchers. Formula (4.2) can be derived by assuming that
the marginal investor holds the bond to maturity, capital losses at maturity are taxed at τ i

while capital gains at maturity are taxed at τ cg, and tax rates are expected to stay fixed over
the lifetime of the bond. Appendix E.2 shows that (4.2) approximately implies the following
tax distortion relative to the reference discount function:

z
(j)
t,i = exp

ηi
t,0ŷt,ij − τ i(1 − ηi

t,0) (Mt,i − j) ŷt,i

1 +
(

τ i − τ cg

1 − τ i

)
max

{
100
pt,i

− 1, 0
}

︸ ︷︷ ︸
capital gains tax advantage

.

This equation resembles Equation (4.1), with two key distinctions. First, equation (4.1) does
not impose cross-equation restrictions on the parameters (ηt,1, ηt,2) derived from features of
the prevailing tax code and the model implied by equation (4.2). Second, it does not assume
that investors hold all bonds to maturity but instead calculates capital gains from expected
price changes.

The advantage of our estimation approach is that it is not tied to a narrow, potentially
misspecified model of investor behavior. First, it enables us to remain agnostic about the
identity of the marginal bond holder. Rather than selecting statutory tax rates from IRS
schedules to compute after-tax yields, we estimate a flexibly parameterized distortion relative
to the reference (before-tax) yield curve—an approach that obviates the need to identify the
“true” marginal tax rates. Second, the literature assumption that all bonds are held to
maturity is unrealistic, especially for samples with a large fraction of long-term bonds (20+
years), like our corporate bond sample. In particular, it tends to overstate the capital gains
advantage because it exaggerates the discounting on the future capital gains tax. Decoupling
the degree of tax deferment from the magnitude of the capital gains advantage—by relaxing
the link between ηt,1 and ηt,2—and not imposing bonds are held to maturity enables us to
mitigate this bias when warranted by the bond sample.
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4.1.2 Embedded Options

Many bonds contain embedded options that affect their prices. Depending on the type of
bond, the option value in (2.4) can be the (negative) value of the call option, the value of
the inflation put option embedded in flower bonds, or the value of the exchange privilege,
respectively.10 We denote this by:

vi(θt, pt,i) =


−vc

i (θt, pt,i), i = callable bond

vf
i (θt, pt,i), i = flower bond

ve
i (θt, pt,i), i = exchange privileged bond

Call Option (vc
i ): Consider a callable bond with maturity Mi, market price pt,i, coupon rate

cpi, strike price pc
t,i, and date from which the bond can be called, T c

t,i. Option pricing theory
(e.g. Black and Scholes (1973)) tells us that the current value of the bond’s call option, vc

t,i,
should depend upon the return from exercising the option (the “moneyness” of the option),
the time until the option becomes active, the window in which the option can be exercised,
and the future path of macroeconomic variables (e.g. interest rates). This motivates the
following functional form:11

vc
i (θt, pt,i) := β(T c

t,i−t) exp
(

ϕt,0︸︷︷︸
common

component

+ϕt,1 max{ŷc
t,i − ŷt,i︸ ︷︷ ︸

moneyness

, 0}
)(

Mi − T c
t,i︸ ︷︷ ︸

call window

)ϕt,2

(4.3)

where (ŷt,i, ŷc
t,i) denotes the yields-to-maturity if the bond is purchased at the current market

price and current strike price respectively and (β, ϕt,0, ϕt,1, ϕt,2) denotes the set of param-
eters to be estimated subject to the restrictions that ϕt,1 ≥ 0 and ϕt,2 ≥ 0. We interpret
ŷc

t,i − ŷt,i as the “moneyness” of the option because it captures the excess return from buying
the bond at strike price (exercising the call) over buying the bond at the market price. If
the market price is greater than the call price, then the yield-to-maturity from exercising
the call option is greater than the yield-to-maturity from purchasing the bond and so the
moneyness becomes positive.12 This implies that β can be interpreted as the time discount
factor on the option, ϕt,0 can be interpreted as the common component of the option value,

10Some bonds have multiple option features. For callable bonds with the exchange privilege, we take
vi = ve

i − vc
i additively. We drop callable flower bonds from the estimation, as they have both an embedded

call and a put.
11A similar functional form to capture the value of call option was proposed by Thies (1985).
12For stocks following a random walk process, the moneyness for a call option is often defined as max{pt,i −

pc
t,i, 0}. This doesn’t make sense for finite maturity bonds because bond prices necessarily drift towards par

value at maturity rather than following a random walk. For this reason, we instead include the excess yield
from exercising the option.
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ϕt,1 can be interpreted as the responsiveness of the option value to the moneyness of the
option, and ϕt,2 can be interpreted as the responsiveness to the size of the call window. We
allow (ϕt,0, ϕt,1, ϕt,2) to be time varying to capture the sensitivity of the option value to the
prevailing macroeconomic conditions.

Flower Bonds (vf
i ): Consider a flower bond with maturity Mi, market price pt,i, and coupon

rate cpi. Flower bonds could be redeemed at par to offset estate taxes upon the holder’s
death, effectively providing a hedge against inflation risk. If flower bonds could be traded
to investors near death, the flower bond provision was potentially priced like a put option.
We allow for this possibility by modeling the flower bond privilege as a put option with the
following functional form:

vf
i (θt, pt,i) := exp

(
γt,0︸︷︷︸

common
component

+ γt,1 max{ŷt,i − ŷp
t,i︸ ︷︷ ︸

moneyness

, 0}
)

M
γt,2
i (4.4)

where ŷp
t,i is the par yield of bond i, and (γt,0, γt,1, γt,2) are the parameters to be estimated,

subject to γt,1, γt,2 ≥ 0. For flower bonds, we refer to the “moneyness” of the flower bond
privilege as ŷt,i − ŷp

t,i because it represents the excess yield-to-maturity from using the flower
bond privilege to redeem the bond at par value compared to selling it at market value. High
moneyness (i.e., when the market price is far below par) implies a valuable put option. Cor-
respondingly large estimated values for γt,0, γt,1 suggest that the option was actively priced
by investors—possibly those most likely to redeem the bond, such as individuals close to
death with imminent estate tax obligations13—while correspondingly low estimated values
suggest the option was not priced. Large values of γt,2 suggest that longer maturity flower
bonds held a more valuable option than shorter term flower bonds.

Exchange Privilege: Unlike the call or flower bond options, the exchange privilege could be
exercised only at maturity so option value can be written more simply as

ve
t,i := q

(Mt,i)
t ζi (4.5)

where ζ i ≥ 0 is a bond-specific parameter representing the expected payoff from exchanging
the bond at maturity. Following Cecchetti (1988), we compute ζi directly from data for each

13This would be consistent with Mayers and Clifford (1987), which finds that the flower bonds with the
deepest discount were redeemed at the fastest rate, suggesting that the most deeply discounted—and thus
most in-the-money—flower bonds were concentrated in the hands of individuals with the highest death
probabilities.
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bond i when they are three months to maturity using the formula:

ζi = exp
(
yT -bill

t Mt,i

)
pt,i −

(
cpt+Mt,i

+ prt+Mt,i

)
where yT -bill

t is the yield on a T-Bill with the closest maturity to bond i. In general, the
expected payoff at maturity fluctuates over time. However, since short-term T-Bills were
the only assets without the exchange privilege, estimating how expectations evolved before
the bond got near maturity is infeasible. Instead, (4.5) assumes that throughout the bond’s
lifetime, the representative investor has perfect foresight of the expected payoff three months
prior to maturity, as captured by ζi.

4.2 Estimation

Our goal is to estimate the discount function, taking into account price distortions due to tax
advantages and embedded options. This involves using bond-level data on trading prices, pt,i,
before-tax promised cash-flows, ct,i, call price schedules, {pc

t,i}t≥T c
i

and inferred values of tax
exemptions {ηpte

t,0 , ηfe
t,0} and exchange privilege ζi, we estimate the reference discount function

qt that minimizes deviations from the law-of-one-price pricing formula, (2.4), subject to the
tax and option distortions (4.1), (4.3), (4.4), and (4.5) with parameter vector:

θt := (ηt,1, ηt,2, ϕt,0, ϕt,1, ϕt,2, γt,0, γt,1, γt,2)

Conditional on our tax and option corrections, one could choose any popular yield-curve
estimator, such as Diebold and Li (2006), Gürkaynak et al. (2007), Liu and Wu (2021),
or Filipović et al. (2022) for the estimation of qt, as the corrections (4.1)-(4.5) essentially
homogenize our bond datasets, allowing estimation with like-for-like securities.

Regardless of the estimator used, we seek to ground our analysis in a homogeneous subset
of bonds that are least affected by tax- and option-induced distortions. To this end, we will
write the reference discount function as a sum of two components:

q
(j)
t = a

(j)
t + h

(j)
t , s.t. a

(0)
t = 1.

We refer to a
(j)
t as an “anchor” and interpret h

(j)
t as the deviation from this anchor. This

formulation allows us to incorporate external information into the estimation of discount
curves. We define the anchor, at := {a

(j)
t }j≥0, as a selection-based index spread. Specifically,

we partition the bond sample into three maturity bins—less than 5 years, 5-15 years, and
more than 15 years to maturity—and compute the average yields of non-callable, non-flower
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bonds traded at or above par within each bin. Although this restriction is well-suited to
minimizing the distortions discussed in Section 3, it is sufficiently stringent that only the
post-1990 period remains usable. Consequently, we expand our selection-based index to
include option bonds that are “out-of-the-money.” With this coarse term structure of yield
indices serving as an anchor, estimation of qt entails assessing the extent to which deviations
from at are warranted by the data.14

To estimate qt, we adapt the non-parametric Kernel Ridge estimator proposed by Fil-
ipović et al. (2022). The advantages of this estimator are threefold. First, the space of
smooth discount functions to choose from is much larger than popular parametric forms,
allowing for more flexibility, while the regularization component of the estimator preserves
the smoothness of the fitted curve as desired in a parametric specification. Second, the de-
gree of flexibility permitted in the estimator is chosen to obtain the strongest out-of-sample
performance, which Filipović et al. (2022) show improves on the performance of other pop-
ular yield curve models in the literature. Finally, this estimator is tractable; its closed form
solution along with additional details are discussed in Appendix F.

The goal of the Kernel Ridge estimator is to estimate a discount function qt ∈ Q(α, δ),
given tuning parameters λ > 0, α > 0, δ ∈ [0, 1] and tax/option parameters θt. The space
of discount functions Q(α, δ) is the set of twice weakly differentiable functions with finite
smoothness, where the smoothness norm is defined by equation (4.7) below and characterized
by the parameters (α, δ). Conditional on at, the discount function, qt := at + ht, is chosen
by minimizing the weighted mean squared pricing errors while rewarding smoothness:

min
qt∈Q(α,δ), θt

∑
i∈Nt

ρi

(
pt,i − vi(θt, pt,i) −

Mi∑
j=1

q
(j)
t z

(j)
i (θt, pt,i)c(j)

t,i︸ ︷︷ ︸
price error

)2
+ λ||ht||2α,δ︸ ︷︷ ︸

regularization

(4.6)

where {ρi}i∈Nt denotes a set of exogenous weights, and the smoothness norm is:

||h||α,δ =
(∫ ∞

0

(
δh′(x)2 + (1 − δ)h′′(x)2

)
exp(αx)dx

) 1
2

. (4.7)

Norm (4.7) represents a δ-weighted linear trade-off between the squared first and second
derivatives of h, penalizing oscillations and kinks respectively, under an exponential weighting
scheme governed by α. The tuning parameters (λ, α, δ) are selected via K-fold stratified cross-
validation across the maturity spectrum. Following Gürkaynak et al. (2007), Payne et al.
(2025), and Filipović et al. (2022), the exogenous weights ρi are set equal to the squared

14In this sense, the anchor can be interpreted as a “prior yield curve.”
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duration times price of bond i, so that the weighted mean squared error in (4.6) approximates
the mean squared yield fitting error.

5 Results

In this section, we show our estimates for the term structure of US funding advantage over
1860-2024. We infer a collection of stylized facts. First, there are low frequency movements
in average US funding advantage that correspond to changes in financial regulation and
the Fed’s quantitative easing programs. Second, existing series have mismeasured long-term
yield spreads in the post WWI period leading to a significant overstatment of US funding
advantage in the 1920s, and 1970-80s. Third, the US lost its funding advantage during the
high inflation in the 1970-80s.

5.1 Long-Term Funding Spreads

We start by inspecting spreads at long maturities. The black lines in figure 5 show time
series for the 20-year (top) and 10-year (bottom) US funding advantage, as measured by
our estimate for the highest-grade corporate zero-coupon yield minus our estimate for the
Treasury zero-coupon yield. Evidently, US funding advantage emerged in the mid 1860s
with the end of the Civil War and the introduction of the National Banking system which
gave National Banks the privilege to create bank notes so long as they backed them by
holding long-term government debt (referred to as “circulation privilege”). It stayed high at
around 1.5% until 1920 when it sharply declined to around 0.5%. This corresponds to the
elimination of National Bank circulation privilege and the introduction of the Fed monopoly
on money creation. Funding advantage then followed a downward trend reaching zero in the
late 1970s before reversing course and increasing back up to around 0.5-1.0% in the 2000s.

We compare our estimates to two other time series for long-maturity US funding ad-
vantage. First, we compare to the index-based AAA Corporate-Treasury spread defined in
Subsection (3.3) and commonly used in the literature, which uses average yields-to-maturity
over all bonds. The index-based spread is depicted by the red lines on both subplots in
Figure 5. Our 20-year spread estimate follows the index-based spread fairly closely except
during the 1920s, when varying degrees of tax exemption on government bonds suppressed
long-term Treasury yields, and during the 1970s–1980s, when high inflation and elevated
interest rates amplified both the capital gains advantage and the embedded option value of
flower bonds. In particular, while the index-based measure (the red line) reaches its highest
values during this period, our estimate shows the opposite: the highest-grade corporate to
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Figure 5: Highest-Grade Corporate to Treasury Spread Estimates: 1860-2024

Notes: Top panel depicts the 12-month centered moving average of the posterior median estimate of the
20-year highest-grade corporate-Treasury spread (black solid line) defined as the difference between 20-year
zero-coupon yields on highest-grade corporate debt and US Treasurys. The gray bands depict 90%
posterior interquantile ranges. The teal line depicts our selection-based yield index, constructed from a
restricted subsample of bonds with maturities exceeding 15 years. The red solid line shows the 12-month
centered moving average of the index-based AAA Corporate-Treasury spread proposed by Krishnamurthy
and Vissing-Jorgensen (2012). Bottom panel depicts the 10-year highest-grade corporate-Treasury spread
against the index-based measure. Dashed vertical lines denote financial regulatory eras. Bottom labeling
shows monetary standards. The light gray intervals depict NBER recessions.
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Treasury spread is close to zero. This suggests that a large portion of the variation in the
index-based measure is attributable to an “inflation risk premium” instead of a “specialness
premium” on US Treasurys.15 We find additional discrepancies relative to the index-based
measure at the 10-year maturity in the bottom subplot of Figure 5, which is arguably the
more relevant maturity for US government borrowing costs because it is closer to median
maturity. In particular, our 10-year spread is relatively high during the yield curve control
period, and relatively low during the decade after the Global Financial Crisis (GFC).

Second, we compare to our selection-based index spread, which is depicted by the teal
line in the top panel of Figure 5. This spread is constructed from a restricted subsample of
bonds with maturities exceeding 15 years and homogeneous characteristics so our estimated
20-year yield spread should closely follow our selection based index spread. That is, the
black line should line up with the teal line in Figure 5. Evidently, our estimated 20-year
yield spread passes this “sense-check” for the periods at which the teal line can be calculated.
The teal line also illustrates the difficulty with attempting to study yields by restricting to
homogeneous bond samples: we can only compute the selection-based index spread for a
limited range of dates and for an average of long-maturity bonds.

5.2 Term structure

Figure 6 depicts the spread differential between 20-year and 5-year AAA Corporate and
Treasury yields. While the US funding advantage was, on average, relatively flat across ma-
turities, certain subperiods reveal pronounced term structures with varying slopes. Specifi-
cally, our estimates show a negative slope—indicating a greater funding advantage at shorter
maturities—during the yield curve control period, and a markedly positive slope—reflecting a
larger advantage at the long end—throughout the decade following the GFC. These patterns
in the term structure of AAA-Treasury spreads align with the Federal Reserve’s Treasury
purchase programs: in the 1940s, the Fed concentrated on short-term government debt,
whereas the post-2008 quantitative easing programs prioritized acquisitions of long-term
Treasurys.

5.3 Yield Curve Fit

We assess the fit of our yield curve estimation in a number of ways. First, Figure 7 shows
properties of the fitted Treasury yield curve across different dimensions of coupons, maturi-
ties, and time. The errors appear to be noise, as desired. The estimates have the desirable

15This is consistent with Figure 1 in Cook and Hendershott (1978), which suggests that after adjusting
for “tax effects” yield spreads between AA corporate and government bonds stayed below 1% before 1975.
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Figure 6: Term Structure of Highest-Grade Corporate to Treasury Spread: 1920-2024

Notes: The solid teal line shows the posterior median estimate of the 20-year minus 5-year US funding
advantage estimates. The bands depict 90% posterior interquantile ranges. The orange dashed horizontal
lines represent mean values across the corresponding subperiods. Bottom labeling shows two large
quantitative easing (QE) episodes. The light gray intervals depict NBER recessions.

property that they fit long-term Treasurys, including those with option features, as well as
bonds under 10 years-to-maturity as shown by the bottom left panel in Figure 7. We com-
pare the errors from our estimates to that of Gürkaynak et al. (2007) in Appendix G.2.2.
As expected, relative to Gürkaynak et al. (2007), our estimates yield the most substantial
reduction in price errors in the 1960-80s when the capital gains advantage is most prominent.

Second, we return to the periods identified in Section 3.2, during which heterogeneous
tax treatments and embedded option features gave rise to bond-specific distortions in yields-
to-maturity. Figure 8 revisits the dates shown in Figures 2 and 3, substituting raw yields-
to-maturity with our tax- and option-adjusted estimates. Evidently, our adjustments do a
good job of homogenizing the data, aligning yields-to-maturity along a common par yield
curve—mimicking the “ideal” configuration in the top left panel of Figure 8: bonds subject
to heterogeneous tax treatments no longer trace distinct curves, and those with embedded
flower (call) options no longer fall systematically below (or rise above) the curve.

Third, we investigate the time series properties of the estimated option prices. The
top panel in Figure 9 depicts the estimated option prices of two flower bonds that were
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Figure 7: Statistical Fit

Notes: The top panel shows weighted price errors (WPE) by coupon for the entire Treasury sample. The
bottom panels show the difference of observed and model implied yields-to-maturity. The bottom left panel
shows quartiles of these yield errors across maturity bins for the entire sample. The bottom right plot
shows the time series of the mean (black line) and standard deviation (blue line) yield errors for every year
in the sample starting in 1917. Pre-1917, our estimates deviate minimally from the estimates of Payne
et al. (2025), thus we do not show them here. We exclude option bonds under 15 years-to-maturity (under
10 years-to-call) in the calculations above.

likely purchased for estate-tax purposes.16 These option values must be subtracted from the
market prices of traded bonds to isolate the fundamental value of their underlying cash-flow
stream. The estimated option values track the rate of inflation extremely closely, which is
consistent with our interpretation that the flower bonds contained an “inflation put option,”
as described in Section 3.2.2. Additionally, we see the price impacts of two key events in the
1970s. First, following the Treasury’s decision to stop issuing flower bonds in March 1971,
and the subsequent rise in interest rates, we see that the flower bond options exhibit a large
jump in value as investors price the combined effect of high interest rates and the impending
decline in the supply of flower bonds. Second, option values fell dramatically in response

16Evidence of this can be seen in the amount outstanding, with the net decline from year to year measuring
the amount redeemed for estate tax purposes. See Cook (1977).
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Figure 8: Tax- and Option-Adjusted Yields-to-Maturity

Notes: Tax- and option-adjusted yields-to-maturity are computed from formula (2.4), substituting the
wedges zi and vi with their respective estimated values. Each circle/square corresponds to a separate bond
outstanding in the given month. Dots show non-callable bonds, squares represent callable bonds.

to the Tax Reform Act of 1976. The Act eliminated the additional capital gains advantage
flower bonds enjoyed when they were redeemed to pay estate taxes, depressing the effective
payoff of the flower option when bond prices were low. Nevertheless, we estimate the value
of the flower options as high as fifty cents on the dollar in 1981 as inflation peaked at around
15% and short-term interest rates reached nearly five times the coupons on flower bonds.
We further investigate the flower bonds in Appendix G.2.3. We show that our estimator fits
the flower bonds with minimal errors, the inclusion of the flower bonds reduces estimation
uncertainty and is informative during periods when all long-term bonds are flower bonds,
and our approach satisfies out-of-sample testing in periods with both long-term flower and
non-flower bonds.17

17We are grateful to Greg Duffee for his insightful suggestions, which inspired this section.
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Figure 9: Estimated Option Values on Government Bonds

Notes: The top panel plots the fitted option values of the two longest-maturity flower bonds issued starting
in 1955. CPI inflation is plotted in green. The bottom plot shows average call option values in the
Treasury sample, with options over 10 years to maturity shown in black and under 10 years to maturity
shown in orange. The T-Bill rate is shown in teal.

Finally, the bottom panel in Figure 9 shows maturity-specific averages of estimated call
option prices for callable Treasury bonds. Call options on Treasurys were clearly valued
from 1930-1955. Notably, call options issued on bonds to finance the New Deal in the
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1930s became increasingly valuable as the government imposed yield curve control during
World War II and effectively lowered its refinancing costs. The other wave of call options—
with exceptionally high coupons—were issued from 1975-1984. As interest rates declined
throughout the 1980s and 1990s and call dates approached, the embedded options on these
bonds appreciated markedly. In both cases, the Treasury exercised the call option at the
earliest permissible date, capitalizing on the opportunity to refinance at substantially lower
rates.

5.4 Additional Considerations

We close this section by discussing two additional considerations that have been studied in
the yield curve literature: default risk and state taxes.

5.4.1 Default Risk

Throughout our paper, we assume that AAA-rated bonds are close to default free and that
any remaining default risk is not an influential component of the AAA-Treasury Spread. In
this section, we investigate the plausibility of this assumption by calculating expected losses
on AAA corporate bonds.

Default risk in AAA corporate bonds can arise from: (i) defaults while classified as a
AAA bonds, and (ii) ratings downgrades that are subsequently followed by defaults. For
AAA corporate bonds, Moody’s Investors Service estimates the probability of default over
a one-year horizon is essentially zero and the cumulative default rate on AAA-rated bonds
over a 20-year horizon is only around 1.3 percent based on data from 1920–2024. As a
result, nearly all of the relevant default risk stems from the second channel—i.e., changes in
expected future defaults following ratings downgrades. To account for this, we estimate an
expected loss measure that incorporates downgrade risk using historical corporate default
rates, transition matrices and recovery rates provided by Moody’s Investors Service dating
back to 1920. This approach aligns closely with the methodology of Elton et al. (2001).
Figure 10 shows that even when incorporating downgrade risk, the expected loss on AAA-
rated bonds is close to zero and noticeably smaller than on AA- or A-rated bonds. This
supports the findings in Elton et al. (2001) that the expected loss is clearly not large enough
to be able to explain the AAA-Treasury spread alone.

5.4.2 State Taxes

A notable feature of corporate bonds is that they are subject to both federal and state
income taxes while taxable Treasurys are only taxed at the federal level. As shown in Elton
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Figure 10: Expected Loss and AAA-Corporate to Treasury Spread: 1920-2024

Notes: The black solid line shows the posterior median estimate of the 20 year AAA-Treasury spread. The
shaded region denotes 90% posterior interquantile ranges. The red, green and blue lines denote the
expected loss on AAA, AA, A corporate bonds, respectively, as computed in Elton et al. (2001).

et al. (2001), any plausible effective state tax rate—estimated between 4-5%—accounts for
approximately 20 basis points of the AA–Treasury yield spread during the 1985–1995 period,
which we assume is comparable to that of the AAA-Treasury spread. Although this tax
differential contributes more to the spread than default risk alone, it nonetheless explains
only a modest fraction of the observed yield differential following the implementation of
federal and state income taxes. Furthermore, assuming movements in the effective state
taxes take place over low frequencies, little of the higher frequency variation in the spread
can be explained by adjusting for state taxes. So, for the purposes of estimating an asset
pricing model of the spread, discussed in Section 6, we gain little from any level shift we
impose on the spread from state taxes. From the perspective of the government budget
constraint examined in Section 2.2—specifically equation (2.3), and revisited in Section 7—
one may interpret terms (ii) and (iii) as inclusive of the flows to the federal government from
foregone state taxes on Treasurys. We stress that any contribution of foregone state tax
revenue left in these terms is far too small to explain these terms in their entirety.
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6 US Funding Advantage, Debt Supply, and Risk

We now look for an asset pricing model that explains movements in the US government’s
funding advantage. Formally, our goal is to identify a model for the wedge Ωt,t+1 that
characterizes the non-pecuniary benefit of holding j-maturity government debt in the Euler
equations for the government and corporate bond discount functions (the equations in (2.2)
from Section 2):

q
(j)
t = Et

[
ξt,t+1Ωt,t+1q

(j−1)
t+1

]
, q̃

(j)
t = Et

[
ξt,t+1q̃

(j−1)
t+1

]
, ∀j ≥ 1, with q

(0)
t = q̃

(0)
t = 1.

Recent papers have argued that log(Ωt,t+1) is well approximated by an affine function of the
aggregate government debt-to-GDP ratio, potentially combined with the market value of
other assets that have non-pecuniary benefits, and i.i.d. demand shocks (e.g. Krishnamurthy
and Vissing-Jorgensen (2012), Krishnamurthy and Li (2023), Choi et al. (2022), Cieslak et al.
(2024)). This work builds on a long literature debating whether changes in debt “quantities”
can forecast variation in the government funding spread (e.g. Fair and Malkiel (1971), Cook
and Hendershott (1978)). Our new funding advantage estimates allow us to re-evaluate this
literature and develop a richer factor model for Ωt,t+1.

We start in Subsection 6.1 by examining the unconditional relationship between quanti-
ties and spreads for different maturity bins. We find that there is a clear negative relationship
between funding advantage and debt-to-GDP for maturities less than 1 year, a small neg-
ative relationship for maturities between 1-10 years, and a slightly positive relationship for
maturities greater than 10 years. These heterogeneous relationships suggest a complicated,
maturity specific connection between quantities and spreads that is not well approximated
by the single-factor models used in the literature.

To better understand these connections, in Subsection 6.2, we estimate an asset pric-
ing model for Ωt,t+1 that uses the principal components of the yield curves and government
debt obligations to forecast changes in the discount functions {q̃t, qt} for highest-grade cor-
porate and government bonds while respecting no-arbitrage across time. Being able to fit
this model highlights the value of having estimated the term structure of government fund-
ing advantage in Section 5: we can now use standard asset pricing tools to understand
corporate-to-government bond spreads. Despite allowing for a highly flexible connection
between quantities and spreads, our model finds that variation in government funding ad-
vantage is primarily driven by the standard risk factors that are known to forecast excess
returns well. That is, in contrast to the recent literature, we find that changes in government
debt obligations explain very little of the variation in government funding advantage.
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In Section 6.3, we explore why our results differ from those in the literature by rerun-
ning the regressions from Krishnamurthy and Vissing-Jorgensen (2012). We show that the
historical evidence used to support their argument is influenced by the distortions in the
index-based spread discussed in Section 3. Using our series for government funding advan-
tage, neither the scatter plots nor the regressions from Krishnamurthy and Vissing-Jorgensen
(2012) provide strong support for a clear, unconditional relationship between funding ad-
vantage and the aggregate debt-to-GDP ratio.

6.1 Quantities and Spreads

We start by inspecting the unconditional relationship between quantities and spreads at
different maturities. We define the quantity-weighted average funding advantage for the
zero-coupon portfolio of government bonds with maturities between T1 and T2 by:

χ
(T1,T2)
t =

∑T2
j=T1 χ

(j)
t q

(j)
t b

(j)
t∑T2

j=T1 q
(j)
t b

(j)
t

Figure 11 plots the quantity-weighted average of the funding advantage within different
maturity bins against the market value of debt to GDP within those same bins18. The first,
second, and third subplots in Figure 11 show the relationship for bonds with maturities less
than 1 year, between 1-10 years, and more than 10 years respectively (i.e. χ0,1

t , χ1,10
t , χ10,∞

t ).
The final plot shows the relationship for the weighted average funding advantage across all
maturities (i.e. χ

(0,∞)
t ). Evidently, for short maturities there is a clear negative relationship,

for medium maturities there is a weak negative relationship, and for long maturities there is
a slightly positive relationship. We show these correlations more formally in Appendix H.1,
where we run the Krishnamurthy and Vissing-Jorgensen (2012) regressions using maturity-
specific quantities and controls for the VIX and the yield curve slope.

6.2 An Asset Pricing Model of Funding Advantage

The maturity specific scatter plots and regressions in Section 6.1 suggest that most of the
variation in government funding advantage is unrelated to quantity changes and any con-
nection between quantities and spreads is complicated and maturity dependent. To explore
these features, we use our yield curve estimates to fit an affine Gaussian model for the Trea-
sury wedge, Ωt,t+1, that potentially depends upon the full maturity structure of government

18In all analysis throughout this Section, we use the collection of marketable government securities to
compute the the market value of government debt. This excludes non-marketable debt issued to other
branches of the government.
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Figure 11: Spreads versus Debt-to-GDP for 1919 to 2024. (a) The top panel has maturities < 1 year. (b)
The second panel has maturities from 1-10 years (c) The third panel has maturities for 10+ years. (d) The
final panel has weighted average spread across all maturities.

38



debt obligations and the residual principal components of the yield curves.

6.2.1 Model

We set up a state space motivated by the affine asset pricing literature. Let x̃t denote
a vector with the first KC principal components of the highest-grade corporate yield curve
and let xt denote the first KG principal components of the government yield curve. These are
the factors that have traditionally been used to fit affine asset pricing models. In addition,
let bt denote a vector with the first KD principal components of the term structure of the
government’s promised debt repayment normalized by GDP (i.e. the principal components
of the vector of the government’s promised debt repayments at all maturities divided GDP).
Incorporating bt allows us to flexibly investigate how much of the variation can be explained
by quantity changes at all maturities. Let vt denote the residuals in the projection of xt onto
[x̃T

t , bT
t ]. Let Xt := [x̃T

t , vT
t , bT

t ] denote the state vector for the model. We impose the law of
motion on the state space:

Xt = µX + ΦXXt−1 + Σϵt, ϵt ∼ N(0, Inϵ)

We assume a standard affine asset pricing model for the corporate pricing kernel ξt,t+1.
Formally, we impose that the corporate pricing kernel takes an exponential affine form:

ξt,t+1 = exp
(
−rt − 0.5λT

t ΣΣT λt − λT
t Σϵt+1

)
rt = δ0 + δT

1 Xt

λt = λ0 + λT
1 Xt

where rt is the short rate, λt is vector of factor exposures, and ξt,t+1 satisfies the corporate
bond Euler equation:

q̃
(j)
t = Et

[
ξt,t+1q̃

(j−1)
t+1

]
, ∀j ≥ 1, with q̃

(0)
t = 1.

Finally, for Treasurys, we impose that the wedge also takes an exponential affine form:

Ωt,t+1 = exp
(
−µ0 − 0.5ωT

t ΣΣT ωt − ωT
t Σϵt+1

)
ωt := ω0 + ωT

1 Xt

where µ0 is a level effect, ωt is the vector of factor exposures for the wedge, and Ωt,t+1 satisfies
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the Treasury Euler equation:

q
(j)
t = Et

[
ξt,t+1Ωt,t+1q

(j−1)
t+1

]
.

Here, we interpret ωt for the different components of shocks to bt as implicitly capturing the
elasticity of the Treasury wedge to principal components of the debt supply shocks. In this
sense, our formulation generalizes the existing models in the literature by allowing for much
greater flexibility in how quantities can impact yield spreads.

6.2.2 Estimation Results

We set the number of principal components to KC = KG = KD = 3. We estimate
the state space, corporate pricing kernel, and Treasury pricing kernel model parameters
(µX , ΦX , Σ, δ0, δ1, λ0, λ1, µ0, ω0, ω1) by adapting standard indirect inference techniques from
the asset pricing literature (e.g. Adrian et al. (2013)). We explain the details of estimation
approach in Appendix H.2 and show that our model generates a tight fit in Appendix H.3.

Figure 12 shows the variance decomposition of how much different shocks contribute to
explaining the variation in the difference between the excess holding returns on highest-grade
corporate and Treasury bonds with maturities of 0 to 20 years. The different colors denote
the contribution from all the debt-to-GDP factors (red), the corporate principal components
(green), and the residuals when the Treasury principal components are projected onto the
other states (blue). Evidently, the residualized principal components of the Treasury yield
curve explain the majority of the variation while the debt-to-GDP factors explain very little.
In this sense, the factors that explain changes in government funding advantage are essentially
the same Treasury risk factors that explain changes in the Treasury yield curve. That is,
regular asset pricing can explain spread changes. We explore the properties of the risk factors
further in Appendix H.3.

6.3 Revisiting Krishnamurthy and Vissing-Jorgensen (2012)

Krishnamurthy and Vissing-Jorgensen (2012) consider a similar environment in which the
price of government Treasurys satisfies:

q
(j)
t = Et[ξ̆t,t+1Ω̆t,t+1q

(j−1)
t+1 ]

where ξ̆t,t+1 is interpreted as the household pricing kernel and Ω̆t,t+1 is the corresponding
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Figure 12: Variance Decomposition of The Excess Return Spread Between Holding Corporate
and Treasury Bonds

Notes: The first column shows the variance decomposition of the spread between the risk-free rate on
corporate bonds r̃ft and on Treasurys rft. The other columns show the variance decomposition of the
spread between the excess holding return on j-maturity corporate bonds
r̃x

(j−1)
t+1 := log(q̃(j−1)

t+1 ) − log(q̃(j)
t ) − r̃ft and the excess holding return on j-maturity Treasurys

rx
(j−1)
t+1 := log(q(j−1)

t+1 ) − log(q(j)
t ) − rft for j between 1 and 20 years. In all columns, the variance

decomposition is broken down into the contributions from shocks to the different residualized principal
components of the Treasury yield curve, the principal components of the corporate yield curve (grouped
together), and the principal components of the government promised cash flows (grouped together).

non-pecuniary wedge. They argue that the wedge Ω̆t,t+1 satisfies the parametric specification:

Ω̆t,t+1 = exp (β0 + β1 log (dt/yt) + log(ζt)) (6.1)

where dt is the market value of all “convenience assets” that earn a non-pecuniary benefit,
yt is GDP, and log(ζt) is a time-t adapted random variable often interpreted as a demand
shifter.19 Like our asset pricing model, specification (6.1) rejects the frictionless markets
model, which assumes that Ω̆t,t+1 = 1. However, unlike our asset pricing model, (6.1)
restricts deviations from frictionless markets by imposing that dt and ζt are the only factors
that can predict the non-pecuniary component of the pricing kernel for government debt.

The authors define the convenience yield to be χ̆(j) := log(q(j)
t )/j − log(q̆(j)

t )/j, where q̆
(j)
t

is the price of a j-maturity bond without non-pecuniary benefit (i.e. “without convenience”)
that satisfies the asset pricing equation q̆

(j)
t = Et[ξ̆t,t+1q̆

(j−1)
t+1 ]. Equation (6.1) implies that

19This form can be derived by imposing that agents receive utility from holding particular assets and β0
has time varying, predictable components.
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the convenience yield on 1-period Treasurys is given by:

χ̆
(1)
t = β0 + β1 log(dt/yt) + log(ζt)

while for j−maturity Treasurys, the convenience yield has a similar formula that also includes
additional covariance terms.20

Krishnamurthy and Vissing-Jorgensen (2012) tests specification (6.1) by looking for co-
movement between the index-based AAA Corporate to Treasury spread and the ratio of the
market value of publicly held government debt to GDP (as well as looking for comovement
with other spreads). We repeat their analysis using our new series. Figure 13 reconstructs
the scatter plot analysis from Figure 1 in Krishnamurthy and Vissing-Jorgensen (2012). The
top panel replicates the scatter plot using their data (the index-based spread) and their time
period (1920-2007). The middle panel plots the same time period as Krishnamurthy and
Vissing-Jorgensen (2012) but uses our estimates for the 20-year funding advantage and our
estimates for the market value of marketable government debt. The bottom panel plots our
estimates for our entire sample (1865-2024). The key periods where our estimates differ
from the existing studies are highlighted with colors and lines linking consecutive years
to show the direction of time. The relatively stable unconditional negative relationship
that Krishnamurthy and Vissing-Jorgensen (2012) observed using the index-based spread is
significantly weakened by using our new estimates. This is because the periods that identify
the shape in the Krishnamurthy and Vissing-Jorgensen (2012) plot (the 1920s, the 1940s,
and the 1970-80s) are also the periods where the distortions discussed in Section 3 are most
pronounced.

The high inflation period in the 1970-80s (the red dots and lines on the scatter plot)
offers a particularly interesting example of how our new series changes our understanding
of government funding advantage. Looking at the top panel, one can get the impression
that the highest-grade corporate-Treasury spread started to increase when inflation shocks
started to devalue long-term government debt after 1965. So it looks like the economy could
be moving along a stable demand function for US Treasurys. Indeed, in the top panel, the
spread reaches its maximum value in the midst of the high inflation in the mid 1970s. The

20If ζt is i.i.d., then, to a first order approximation, this becomes (see Appendix H.4):

χ̆
(j)
t ≈ 1

j
(β0 + β1 log (dt/yt) + log(ζt)) + 1

j

(
log
(
Et

[
q̃

(j−1)
t+1

])
− log

(
Et

[
q

(j−1)
t+1

]))
+ 1

j

 Cov
[
ξt,t+1, q̃

(j−1)
t+1

]
Et [ξt,t+1]Et

[
q̃

(j−1)
t+1

] −
Cov

[
ξt,t+1, q

(j−1)
t+1

]
Et [ξt,t+1]Et

[
q

(j−1)
t+1

]

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Figure 13: (a) The top panel replicates Krishnamurthy and Vissing-Jorgensen (2012) using their data and
time period from 1920-2007. (b) The middle panel uses our estimate of the spread to replicate the top panel.
(c) The bottom panel uses our estimate for our full sample from 1865-2024.
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middle panel, with our data, tells a very different story: as government debt got devalued
in the 1970-80s, the highest-grade corporate-Treasury spread fell to around zero, its lowest
value in the sample. So it looks like high inflation coincided with a breakdown (or leftward
shift) of the relationship between spreads and quantities. This analysis also casts doubt on
other papers in the literature that rely on the behavior of the index-based measure during the
high-inflation period of 1965–1985 in their identification schemes. For example, in Appendix
I, we show that the identification of government market power in Choi et al. (2022) no longer
holds with our new spread estimates.

The bottom panel with our full sample from 1860-2024 sheds light on how sharply gov-
ernment funding advantage has varied across financial regulatory eras. For a given level
of debt-to-GDP, the spread was approximately 0.5-1.0 percentage points higher during the
National Banking Era (approximately 1865-1920) compared to later periods. This is similar
in size to the drop in the spread around 1920 in Figure 5 when National Banks stopped using
government debt to create bank notes (that is, when the National Bank circulation privi-
lege was eliminated). This is suggestive evidence that the circulation privilege contributed
approximately 1 percentage point to the government’s funding advantage in the 19th century.

We formalize these observations in Appendix H.1, where we replicate the Krishnamurthy
and Vissing-Jorgensen (2012) regressions and show that log(Debt/GDP ) is no longer sig-
nificant across our long sample once we control for financial regulatory regimes and volatility.

Discussion on funding advantage, convenience yields, and quantities: Our analysis
suggests that quantity changes explain very little of the variation in the AAA Corporate to
Treasury spread. However, this doesn’t necessarily confirm that quantity changes cannot
explain the convenience yield from Krishnamurthy and Vissing-Jorgensen (2012), because
AAA Corporate bonds may also earn some non-pecuniary benefits and so the AAA Corpo-
rate to Treasury spread need not be equal to the convenience yield. To make progress on
estimating convenience yields, we would need to bring in historical equity pricing data and
estimate a pricing kernel undistorted by any kind of convenience benefit.

7 Non-Pecuniary Revenue in Government Budgets

We close the paper by returning to the government budget constraint from Section 2 and
quantifying the non-pecuniary revenue the US government has received from its funding
advantage. We begin by studying the extent to which period-t government liabilities were
backed by the present discounted value of future non-pecuniary revenues. Figure 14 uses our
estimated time series for government funding advantage to compute terms (ii) and (iii) in the
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lifetime government budget constraint (2.3) under the assumption that investors have perfect
foresight over future debt issuance. Because these terms are essentially stocks that capitalize
the present discounted value of future spreads, we divide the series by GDP. Evidently, the
US government’s funding advantage in the bond market had a meaningful impact on the
backing of government debt. In particular, during the largest debt expansions (WWII and
the Global Financial Crisis), non-pecuniary revenue backing was in the range of 6-8% of
GDP.
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Figure 14: Capitalized Non-Pecuniary Revenue as percentage of GDP

Notes: The blue area shows the present discounted value of the future non-pecuniary revenue from the
funding spread on future issuance under perfect foresight and relative to GDP (term (iii) in Equation
(2.3)). The orange area shows the premium on outstanding debt relative to GDP (term (ii) in Equation
(2.3)). Perfect foresight calculations are done using formula (A.1) in Appendix A with foresight horizon of
10 years.

We also compute the ex-post contribution of non-pecuniary revenue to government fi-
nancing across years in Figure 15. The black line shows the total annualized non-pecuniary
revenue of the government normalized by total federal receipts for each year. The teal and
orange bars decompose the period-t non-pecuniary revenue into the contribution from pre-
mium changes (the teal bar) and the spread on new issuance (the orange bar). We describe
the exact calculations in Appendix A.2. The plots show that it was costly for the government
to establish its funding advantage at the end of the Civil War: the government had to absorb
capital losses when Treasurys started to trade at a premium in the late 1860s. However, this
was a short-term cost that reaped significant long-term gains. During periods of crisis in the
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Figure 15: Non-Pecuniary Revenue as percentage of Total Federal Revenue

Notes: Components of the non-pecuniary revenue is expressed relative to total annual federal revenue.
“Premium changes” are defined as −
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t−1 ). The two terms add up to the period-t
non-pecuniary revenue, i.e.,

∑∞
j=1(q(j)

t − q̃
(j)
t )(b(j)

t − b
(j+1)
t−1 ) from term (iii) in Equation (2.3). The value of

the non-pecuniary revenue relative to total receipts (black line) in 1918 is 37.6%. The light gray intervals
depict NBER recessions. The light red bands, from left to right, depict the Civil War, the
Spanish-American War, WW1, WW2, and COVID.

twentieth century (World Wars, New Deal, GFC, COVID), the government used its funding
advantage as a significant form of revenue. In particular, non-pecuniary revenue was over
25% of total revenue during WWI, approximately 15% of total revenue during the Depres-
sion, and approximately 5% of total revenue during the GFC. This suggests that in these
periods, the government preferred financing expansionary measures by having the private
sector hold its debt as opposed to raising taxes.

8 Conclusion

In this paper, we construct new estimates for historical highest-grade corporate and US Trea-
sury yield curves and use them to compute the first full term structure of AAA Corporate-
Treasury spreads since 1860. This necessitates adapting yield curve estimation techniques
to handle a long time series with heterogeneous tax advantages and option features. We use
our estimates to show how the US funding advantage has evolved over time, and the role it
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has played in financing the government during critical periods of US history. We show that it
is the standard risk factors, not quantities, that explain variation in US funding advantage.
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A Government Budget Constraint Arithmetic

From Section (2.2), the inter-period government budget constraint is:

b
(1)
t−1 + gt − τt =
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j=1

q
(j)
t

(
b

(j)
t − b

(j+1)
t−1

)

which states that interest payments today plus the primary deficit is equal to the market
value of newly issued debt. We rearrange the terms to get:

∞∑
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q
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To get the lifetime budget constraint, we need to iterate this forward. This requires fore-
casting future prices, which we do by imposing the asset pricing equation for corporate
bonds:
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in the government budget constraint. This gives:
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By adding and subtracting corporate bond prices, this can be written as
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Iterating the final term forward and imposing the transversality condition gives:
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which after rearranging terms gives:
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as stated in (2.3).

A.1 Special Case: Perfect Foresight

We consider a special case, which is used in Section 7. If we impose perfect foresight, then
the asset pricing equation becomes:
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and so the budget constraint becomes:
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A.2 Flow Revenue

In Section 7, we also decompose the flow revenue from government funding advantage. To
do this, we rearrange the intertemporal government budget constraint to identify the capital
gains on existing debt and the premia on new issuance. The intertemporal budget constraint
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at time t can be written as:
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where the first term is the capital gains/loss from the revaluation of debt between t − 1 and
t and the second term is the market value of new issuance. We can write this in spreads to
get:
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where the second and fourth terms are the contributions from premium changes and non-
pecuniary benefit on new issuance (which are depicted by the by the blue and orange bars
on Figure 15 respectively).

B Historical Context

This appendix provides historical and institutional context for interpreting the long-run data
on US corporate and government bond markets, highlighting key developments in issuance
practices, regulation, and market structure over time.

Brief History of the US Bond Market: The US corporate bond market traces its origins to
the early 19th century, driven by the need to finance large infrastructure projects. The first
corporate bonds were issued by banks and canal companies, but the market truly expanded
with the rise of the railroad industry. By the 1850s, railroad companies were expanding into
the west at a scale and level of uncertainty that they could no longer raise sufficient capital
from the local and fragmented banking sector. The solution was to issue bonded debt to a
broader pool of investors, which created what is considered the world’s first corporate bond
market (Sylla et al., 2006). In the following decades, the corporate bond market expanded
rapidly and by the early 2000s was several times larger than the entire UK or US sovereign
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debt markets.21 Throughout the early 20th centuries, the market matured, with securities
becoming more standardized, and industrial corporations and utilities also began issuing
bonds.

Concurrently, throughout the nineteenth century, the federal government issued bonds
infrequently, as Congress was responsible for debt management, leading to long-maturity
issuances with significant variations in maturities, coupon rates, denominations, and units
of account (Payne et al., 2025). The expansion and standardization of federal debt issuance
occurred gradually over time, with Congress delegating more autonomy in designing and
issuing securities to the Treasury Department between 1917 and 1939. Both markets con-
tinued to expand throughout the 20th century and by the mid-20th century, US Treasury
securities had become the world’s largest and most liquid debt market, with a standardized
set of securities at various maturities.

Both corporate and Treasury bonds traded actively on major exchanges like the New York
Stock Exchange (NYSE) and were held by similar investors, including banks, insurers, and
wealthy individuals. Both corporate and government bonds shared similar features, such as
fixed coupon payments and typically long maturities and were traded more frequently than
other asset classes.

Denomination: The denomination of both Treasury and corporate bonds has evolved simi-
larly throughout American financial history. From 1800 to 1933, the US adhered to a gold
standard except from 1861 to 1878 when it temporarily suspended gold convertibility and
issued a paper currency known as “greenbacks”. During this period, both federal and cor-
porate bonds were typically denominated in gold (or greenbacks during the suspension).
Following the Gold Reserve Act of 1933, which prohibited private US citizens from holding
gold coins, both markets transitioned to nominal dollar denomination. The Bretton Woods
Agreement (1944-1971) reintroduced a type of gold standard by establishing an international
system of fixed exchange rates with the US dollar convertible to gold until its collapse in
1971 when the dollar was floated. Since then, both Treasury and corporate bonds have been
issued exclusively in nominal terms until the introduction of Treasury Inflation-Protected
Securities (TIPS) in 1997, which provide explicit inflation indexing.

Credit ratings: The rise of corporate bonds was accompanied by the development of credit
ratings. Beginning in 1832, the “American Railroad Journal” published detailed assessments
of railroad companies, covering physical descriptions of the railroads, their assets, liabilities,
and earnings. In 1868, its former editor Henry V. Poor published the first volume of “Poor’s

21The US actually paid off its entire national debt in 1836.

54



Manual of the Railroads of the United States”, a comprehensive resource detailing financial
statements, operational statistics, and the capital structure of their securities. In 1909, John
Moody in his “Moody’s Manual of Railroads and Corporation Securities” first introduced
a structured rating system for these securities that established the foundation for modern
credit ratings.

Default Risk: In the early 1900s, Moody’s Investors Service began assigning credit ratings to
bonds and other financial assets, with “AAA” denoting the highest level of creditworthiness.
This rating was based on factors such as physical capital, debt levels relative to assets and
revenue, profitability, and liquidity. To qualify for an “AAA” rating, bonds needed a long-
term track record of exceptionally strong interest coverage and substantial physical assets
backing the issue, ensuring minimal investment risk. Most bonds were either first mortgages
or well protected underlying mortgages. Moody’s argued that even in changing economic
conditions, the fundamental strength of these securities would remain intact. As Hickman
(1958) found, credit ratings offered investors valuable insights into bond quality and default
probabilities.

Policy Interventions: Corporate and government bond markets have historically been subject
to different regulatory frameworks, evolving in response to financial and economic pressures.
In the decades before the Civil War, only state-chartered banks existed, which were not in-
centivized to hold Treasurys.22 This changed with the National Banking Acts of 1863–1866,
which established a system of nationally chartered single-branch banks. These banks were
permitted to issue banknotes up to 90% of the lower of the par or market value of qualifying
US federal bonds, effectively tying their balance sheets to government debt. However, na-
tional banks were prohibited from using railroad bonds as backing for their notes and faced
strict limitations on the types of loans they could issue.

World War II brought further regulatory intervention, as concerns over war financing led
to the government “fixing” the yield curve from 1942 to 1951, with the T-Bill rate set to
3/8% and the long-term bond yield capped at 2.5% (see Garbade (2020) and Rose (2021)).
This policy was implemented through coordination between the Treasury and the Federal
Reserve, with the Fed agreeing to absorb excess bond supply at the fixed price, and implicit
coordination with the banking system, which ended up predominantly holding government
debt and reserves. The arrangement ended with the 1951 Treasury-Fed Accord, establishing

22These banks, chartered by state legislatures, could issue their own banknotes and were subject to diverse
balance sheet regulations, often requiring them to hold gold and state bonds. However, no state banks could
operate nationally.

55



official Fed independence from the Treasury.
The 2007–2009 financial crisis triggered extensive regulatory reforms, including the Dodd-

Frank Wall Street Reform and Consumer Protection Act, which introduced new oversight
for financial institutions. Additionally, the Basel III regulations imposed stricter capital re-
quirements and portfolio constraints on banks, penalizing excessive leverage and encouraging
the holding of government debt over assets like corporate bonds. In response to the crisis,
the Federal Reserve also launched a quantitative easing (QE) program, purchasing long-term
government bonds to lower interest rates and stabilize financial markets.

C The Corporate and Government Bond Datasets

We construct a new historical dataset of high-grade US corporate bonds, providing monthly
data on trading prices and cash-flows as well as bond characteristics and credit ratings
from 1840-2024. Monthly prices and cash-flows date back to 1840, along with detailed
bond characteristics such as maturity, denomination and callability. Annual Moody’s credit
ratings date back to their earliest availability: 1909 for railroads and 1914 for public utilities
and industrials. Our dataset integrates existing databases with hand-collected prices and
bond characteristics from historical newspapers, business magazines, and financial releases
by companies. We complement the corporate bond data with a comprehensive panel of prices
and quantities for all US Treasury securities from 1776 to 2024.

C.1 Corporate Bond Data

C.1.1 Bond Prices

To compile end-of-month trading prices from 1840-2024 we rely on six main data sources:
Global Financial Data (GFD), the New York Times (NYT), the Commercial & Financial
Chronicle (CFC), Barron’s Magazine, the Lehman Brothers Fixed Income Database, and the
Merrill Lynch Bond Index Database. From 1840-1884 we take bond price data from Global
Financial Data (GFD). The GFD dataset covers nearly 800 corporate bonds from 1791 to
1884, almost all of which are railroad bonds, reflecting their dominance in the bond market
during that period. The price data is particularly rich between 1870-1884, featuring both
daily time series of trading prices and bond characteristics such as the bond’s name, coupon,
and company information. The data does not include further bond characteristics such as
maturity date or denomination. From 1886 to 1963, we collect end-of-month trading prices
from the Commercial & Financial Chronicle. The Commercial & Financial Chronicle was
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a weekly business newspaper published from 1865 to 1987.23 We use bond quotations from
the New York Stock Exchange, focusing on actual sale prices, as reported in the “Stock
Exchange Quotation / Bond Record” section. From 1884 to 1918, we collect only railroad
bond prices. Beginning in January 1918, we expand the collection to include all corporate
bonds, reflecting the growing importance of utility and industrial securities in the corporate
bond market during the early 20th century. From 1964 to 1973, we collect bond closing
prices from Barron’s Magazine. Barron’s is a weekly financial newspaper founded in 1921,
providing coverage of closing prices for actively traded corporate bonds in their “Listed Bond
Quotations” section. From 1973 to 1997 we rely on the Lehman Brothers Fixed Income
Database distributed by Hong and Warga (2000) which provides comprehensive monthly
bond-specific information from January 1973 to December 1997, including bond price, ratings
and coupons. After 1997 we use the Merrill Lynch Bond Index Database which provides a
similar level of detail. We use daily closing prices from the New York Stock Exchange as
reported in The New York Times (NYT) to fill in any gaps in our sample between 1840 and
1973.

C.1.2 Bond Characteristics

A major challenge in estimating yield curves is that we need accurate information about
bond maturity, coupon payments, and embedded options (e.g., call features). For the pre-
1900 period, we draw maturity, coupon and callability information from a variety of sources.
These include the Investors’ Supplement of the Commercial and Financial Chronicle, the
American Railroad Journal, Poor’s Manual of Railroads, the Catalogue of Railroad Mort-
gages, various publications by Joseph G. Martins on the Boston stock market, and annual
reports to stockholders of various railroad companies. For bonds maturing between 1900
to 1972, we extract the maturity, coupon and call features (i.e., call window, call date and
call price) from various Moody’s Manuals which were first published in 1900. Initially titled
Moody’s Manual of Industrial and Miscellaneous Securities, it was later replaced by Moody’s
Manual of Railroads and Corporation Securities, and subsequently by Moody’s Analyses of
Investments. These manuals provide comprehensive information on outstanding bonds, in-
cluding the issue and maturity dates, coupon rates and schedules. For the period after 1972,
we are able to rely on detailed bond information from the Lehman Brothers Fixed Income
Database and the Merrill Lynch Bond Index Database.

23Scanned digital copies of the Chronicle are available from the Federal Reserve Archival System for
Economic Research (FRASER) from July 1865 to December 1963.
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Figure 16: Corporate Bond Price Data Sources

Data sources for bond prices from 1860-2024. GFD, Lehman Warga, and Merrill Lynch are existing
datasets, while bond price data from the CFC and Barron’s was manually collected using scans from digital
archives. Light gray areas indicate gaps in the current sample.

C.1.3 Credit Ratings

To classify high-grade bonds, we mainly rely on Moody’s credit ratings which are readily
available from the Lehman Brothers Fixed Income Database and the Merrill Lynch Bond
Index Database. Prior to the availability of these datasets, we collect annual bond ratings
from the Moody’s Manuals. Moody’s first issued credit ratings in 1909 for railroads, ex-
panding to public utilities and industrial companies in 1914.24 For bonds maturing before
1909, we follow Macaulay (1938) in identifying high-quality issuers, relying on the selection
of railroad companies included in his high-grade railroad bond yield index. Specifically, we
include companies from which Macaulay selected at least one bond for his index. Macaulay
carefully selected companies based on their financial strength and excluded them before they
encountered financial trouble, to ensure that his index reflected only the most creditworthy
issuers. However, as pointed out in Homer and Sylla (2004), constructing an index equivalent
to a modern AAA-bond-index prior to 1900 presents challenges due to the limited number of
true high-grade issuers and even Macaulay’s “high-grade” sample exhibits some variation in
credit quality. Hence, these classifications should be treated with some caution. In addition,
the introduction of credit ratings may have changed market risk assessment, as detailed in
Bernstein et al. (2025).

C.2 Treasury Data

We use a comprehensive panel of prices and quantities of all US Treasury securities from 1776
to 1925, compiled by Hall et al. (2018) and used in Payne et al. (2025). We complement this
historical panel with the CRSP US Treasury database after 1925. Quantities outstanding
are quarterly from 1776 to 1871 and monthly thereafter. Prices are monthly, using end-

24We focus on Moody’s ratings since they are the earliest available, whereas Poor’s ratings began in 1922
and Fitch’s in 1924.
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of-month closing price when available. If no closing price is available, either the average
of high and low prices or the average of bid and ask quotes are used. We restrict our
historical sample to bonds with more than one year to maturity, excluding short-term debt
due to liquidity premia and omitting bonds with ambiguous currency denomination. We
also exclude Treasury Inflation-Protected Securities (TIPS), but keep bonds with varying
tax exemptions and bonds with embedded call and put options. Details on data sources and
construction of the historical Treasury panel can be found in Appendix A of Payne et al.
(2025).

D Bond Characteristics and Institutional Treatment

This section provides further details on differences in bond characteristics and institutional
treatment between US government and corporate debt that present challenges for measuring
the funding advantage of the US government.

D.1 Additional Composition Plots

Figure 17 shows the share of government and corporate debt trading at a discount (as
measured by whether the price is less than 98 dollars). Figure 18 shows the composition
of callable and non-callable bonds among outstanding US government and corporate debt.
Figure 19 shows the number of flower and non flower bonds for maturity bins less than 5
years, between 5 and 10 years, and more than 10 years. Evidently, flower bonds made up
most of the long-term debt during the period from 1960-1974.

D.2 Interest Rate Ceiling on Government Bonds

A key legislation that unexpectedly gained prominence in the late 1960s and early 1970s was
the Congressional mandate, established in 1917, which imposed a 4-1/4 percent interest rate
ceiling on new long-term Treasury bonds.25 Consequently, when interest rates surpassed the
4-1/4 percent ceiling in the 1960s, the US Treasury was unable to issue new bonds with
maturities exceeding 5 years (extended to 7 years in 1967) and so the average maturity
of outstanding US debt declined significantly, and the government bond portfolio became
heavily concentrated in seasoned discount bonds. The ceiling on long-term US Treasury

25As explained in Department of the Treasury (1976), the primary rationale for setting a ceiling rate of
4-1/4 percent on long-term government bonds was to minimize borrowing costs tied to the United States’
involvement in WWI. This ceiling was intentionally set 25 basis points below prevailing market yields,
reflecting the belief that the American public would buy Liberty Bonds for reasons beyond comparative
yield considerations.
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Figure 17: Composition of Government & Corporate Debt by Discount: This figure shows
the share of bonds trading below par among outstanding US government and corporate debt
from 1900 to 2025.

bonds was effectively lifted in 1971, when $10 billion worth of bonds were authorized without
regard to the ceiling. Since then, the bond authorization limit has been raised multiple times,
and the issuance of long-term bonds has become a regular component of the Treasury’s
refunding operations.

D.3 Circulation Privilege

During the National Banking Era (1863–1913), US federal bonds held a special regulatory
status known as circulation privilege, which allowed federally chartered banks to issue na-
tional bank notes backed by eligible US Treasury bonds. This privilege created a strong
institutional demand for long-term government securities, as banks could profitably convert
them into currency liabilities. Crucially, corporate bonds were not eligible for this privilege,
so the resulting yield suppression applied exclusively to US government debt. As a result, the
circulation privilege helped support bond prices and depress long-term yields of government
bonds, contributing to a widening of the AAA–Treasury spread during this period.
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Figure 18: Composition of Government & Corporate Debt by Callability: This figure shows
the share of callable and non-callable bonds among outstanding US government and corpo-
rate debt from 1900 to 2025.
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Figure 19: Composition of Treasurys: 1960-1990. The left subplot shows the number of
bonds with less than 5 years to maturity. The middle subplot shows the number of bonds
with 5-10 years to maturity. The right subplot shows the number of bonds with more than
10 years to maturity.
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D.4 Default Risk

To account for time-varying changes in default risk we calculate an expected default probabil-
ity and expected loss on corporate bonds by rating including downgrade risk over a one-year
horizon. Let: Pr→j be the probability that a bond rated r migrates to rating j over one year
(from the transition matrix); dj(t) the empirical one-year default probability for rating j in
year t (from annual default rates); and Rj the average recovery rate for rating j over the
sample period.

Then the expected loss for a bond rated r in year t is:

Expected Lossr(t) =
∑
j∈R

Pr→j · dj(t) · (1 − Rj) + Pr→Def · (1 − Rr)

where R is the set of non-default ratings (e.g., AAA, AA, A, BAA, etc.). The first term
captures indirect default risk via downgrade (i.e., migrate to a worse rating j, and then
default). The second term captures direct default risk from rating r. The default probability
is calculated analogously assuming that recovery rates Rj are zero for all ratings. Figure 20
shows the expected default probability over a one year-horizon.
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Figure 20: Expected Default Probability and AAA-Corporate to Treasury Spread
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E Additional Details on Tax Distortions

The modern yield curve estimation literature (e.g. Diebold and Li (2006), Gürkaynak et al.
(2007), Liu and Wu (2021), Filipović et al. (2022)) has attempted to handle bond hetero-
geneity by restricting the sample to bonds that do not bias the yield curve fit. It is well
understood that the call, flower, and exchange options create biases and many of these pa-
pers have restricted their samples by excluding bonds with these characteristics. However,
these papers ignore taxes. In this section of the appendix we outline when and how to adapt
yield curve estimation techniques to handle distortions from tax treatments.

E.1 Scale-Invariant Bond Samples

The presence of taxation does not necessarily alter the estimation of yield curves. In this sub-
section, we formalize a notion of scale-invariance to taxes and discuss when scale-invariance
fails to hold both theoretically and empirically.

Let Nt denote a (potentially restricted) sample of bonds that we consider for yield curve
estimation. As before, let qt := {q

(j)
t }j≥0 denote the discount function, with q

(0)
t = 1, that can

be inferred from the tax-unadjusted cash-flows of these bonds while imposing the following
asset pricing formula

pt,i =
Mi∑
j=1

q
(j)
t ci ∀i ∈ Nt (E.1)

and let yt := {y
(1)
t , y

(2)
t , . . .} denote the embedded zero-coupon yield curve defined as

y
(j)
t :=

(
1

q
(j)
t

) 1
j

− 1 ∀j ≥ 1.

Evidently, adjusting the cash flows for taxes would yield a different discount function {q
(j)
t }j≥0,

with q
(0)
t = 1, and consequently a different yield curve yt := {y

(1)
t , y

(2)
t , . . .}, where y

(j)
t :=

[1/q
(j)
t ]1/j − 1, even when using the same bond sample Nt. The corresponding asset pricing

formula is:

pt,i =
Mi∑
j=1

q
(j)
t (ci − tax

(j)
t,i ) ∀i ∈ Nt. (E.2)

where tax
(j)
t,i denotes all taxes incurred from holding bond i in period t + j.
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While the two yield curves are different, their relationship is not necessarily complicated.
A particularly convenient case arises when the two yield curves yt and yt are scalar multiples
of one another, which we refer to as scale invariance.

Definition 1 (Scale-invariance to taxes). For a given tax structure {tax
(j)
t,i }, a bond sample

Nt is scale-invariant to taxes, if the zero-coupon yield curve, yt, inferred from tax-unadjusted
cash-flows using (E.1) is proportional to the zero-coupon yield curve, yt, inferred from tax-
adjusted cash-flows using (E.2) with

y
(j)
t = (1 − τ)y(j)

t , ∀j ≥ 1

for some positive scalar τ ∈ [0, 1).

For a sample that is scale invariant to taxes, the presence of taxation “does not matter
for yield curve estimation” because the implied tax distortions are neither bond-specific nor
maturity-specific: they simply scale the zero-coupon yield curve. This means that estimating
equation (E.1) and (E.2) will lead to the same quality of fit despite the presence of taxation.
So, when we have a scale-invariant bond sample, there is a separation between yield curve
estimation and tax adjustment. We can estimate a so-called reference yield curve, yt, from
tax-unadjusted cash-flows without taking a stand on who is the marginal holder of the
bonds and what is her relevant tax rates. Then once the reference curve yt is estimated,
an individual’s after-tax yield curve can be derived by applying their specific marginal tax
rates.

E.1.1 Sufficient Conditions for Scale Invariance

A scale-invariant bond sample is an ideal case which might not always hold in reality. Section
3 provided evidence that the available samples contained bonds with heterogeneous tax
treatments, at least before the 1980s. To get a theoretical sense of when scale-invariance
is a good approximation (and so modern yield curve estimates are reliable) and when it is
not (and so modeling bond-specific tax distortions is necessary), the following proposition
provides a set of sufficient conditions for scale-invariance to hold.

Proposition 1. Suppose that investors are risk neutral. A bond sample Nt is scale-invariant
to taxes, if the tax system satisfies the following conditions:

1. Coupon income, capital gains, and capital losses are taxed at the same rate τ .

2. Capital gains and capital losses are taxed each period (they can be amortized/accreted)
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3. The tax rate τ is common across all bonds i ∈ Nt: no bonds have tax exemptions.

Proof. Suppose bond i has price pt,i with coupon cpi, and there is one prevailing tax rate τ .
Under (1)-(3), the bond pricing formula that defines qt can be written as

pt =
Mi∑
j=1

q
(j)
t {(1 − τ)cpi − τ(p̂t+j,i − p̂t+j−1,i)} + q

(Mi)
t 100

where p̂t+j,i is the implied price of the bond at time t + j that solves the following recursion
for each j ∈ {0, M − 1}

p̂t+j = q
(j+1)
t

q
(j)
t

[(1 − τ)cpi + p̂t+j+1 − τ(p̂t+j+1 − p̂t+j)]

with p̂t+M = 100 and p̂t = pt. This recursion can be rearranged as

1 + q
(j)
t /q

(j+1)
t − 1

1 − τ
= cpi + p̂t+j+1

p̂t+j

Let f
(j−1,j)
t := q

(j−1)
t /q

(j)
t − 1 be the one-period forward rate between period t + j − 1 and

t+j and note that y
(j)
t ≈ 1

j

∑j
s=1 f

(s−1,s)
t which becomes exact with continuous compounding.

Using this approximation, the above recursion becomes:

pt,i =
Mi∑
j=1

j∏
s=1

 1

1 + f
(s−1,s)
t

1−τ

 cpi +
Mi∏
s=1

 1

1 + f
(s−1,s)
t

1−τ

 100

≈
Mi∑
j=1

 1

1 + y
(j)
t

1−τ


j

cpi +

 1

1 + y
(Mi)
t

1−τ


Mi

100

Applying the definition of yt, this implies that

(1 − τ)y(j)
t = y

(j)
t ∀j ≥ 1.

E.1.2 Institutional and Empirical Relevance

US Federal Income Taxation: Let τ inc be the marginal income tax rate on ordinary income
and let τ cg be the marginal tax rate on long-term capital gains income. For a bond, the
coupon payments are taxed at the rate τ inc as they fall due. The tax implications of capital
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gains/losses from price appreciation/depreciation are more complicated.

• Capital losses can be deducted from ordinary income (so they are taxed at rate τ inc)
and typically they can be amortized, i.e. capital losses are effectively realized at the
end of each period. This means that capital losses are zero at maturity/the time of
selling.

• In contrast, capital gains are taxed at the rate τ cg and cannot be amortized, i.e., all
capital gains are realized at the end of the holding period. The implication of this
is that tax effects become functions of the expected holding period. The longer the
average holding period, the lower the present discount value of capital gains taxes over
the lifetime of the bond.

Important Subperiods: As we saw above, ignoring income taxes would not be a problem if
bond samples included bonds with homogeneous tax treatments. Proposition 1 shows this
is satisfied when (i) coupon income, capital gains, and capital losses are all taxed at the
same rate, (ii) capital gains and capital losses are taxed each period, and (iii) the tax rate
is common across all bonds. Here we discuss when and how these conditions are violated in
our historical sample:

• Before World War II, the main issue is that condition (iii) is violated because there
were heterogeneous tax exemptions on government bonds.

• After World War II, tax rates become homogeneous and so the first two conditions
become the main issues. The major violations to conditions (i) and (ii) come when
bonds predominately earn capital gains because capital gains are taxed at a lower rate
and deferred. As we can see in Figure 17 in Section D, a key example of this is the
period from 1955-1985 when bonds were trading well below par and so the market
understood there would future price increases back to par.

• Conditions (i) and (ii) are approximately satisfied when bonds predominately incur
capital losses. This is because coupon income and capital losses are taxed at the same
rate and capital losses are amortized each period. As we can see in Figure 17 in Section
D, a key example of this is the 1985-2022 period when most bonds were trading above
par and so the market understood there would be future price decreases back to par.

Consequently, outside of the 1985-2022 period, it is largely impossible to find a restricted
bond sample with homogeneous tax treatments. Instead, we need to find a way to correct
for bond- and maturity-specific tax distortions.
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E.2 Reference Yield Curve and Tax Distortions

What breaks a bond sample’s scale-invariance to taxes is heterogeneous tax treatments:
when tax effects introduce bond-specific distortions relative to the common reference yield
curve yt. Historically, there are three kinds of tax effects that we need to consider:

1. Tax exemptions: when bonds are subject to differing tax rates, independent of their
holders.

2. Deferred tax payment: unpaid taxes can be reinvested until the end of the holding
period at the after-tax rate of return, then discounted back at the reference discount
rate which is higher than the after-tax rate. This implies that bonds that are held for
longer tend to have a lower tax burden (a lower “effective tax rate”).

3. Capital gains tax advantage: the level of projected taxes declines as the level of pro-
jected capital gains on a bond increases. This implies that bonds that have larger
projected capital gains have a lower tax burden (a lower “effective tax rate”).

As we discussed in Section 2.3, these tax effects induce bond-specific distortions relative to
the common reference yield curve that we represent by a multiplicative wedge zi:

pt,i =
Mi∑
j=1

q
(j)
t ct,i −

Mi∑
j=1

q
(j)
t tax

(j)
t,i =

Mi∑
j=1

q
(j)
t z

(j)
i (θ, pt,i)ct,i ∀i ∈ Nt. (E.3)

which is a function of parameters to be estimated, θ and potentially some observable bond
characteristics such as the bond price pt,i. When the bond sample is scale-invariant to taxes,
bond-specific distortions are zero and so z

(j)
i = 1, ∀j and ∀i ∈ Nt.

This formulation allows us to shift focus from the tax
(j)
t,i -dependent after-tax discount

function {q
(j)
t }j≥1 to a reference discount function {q

(j)
t }j≥1 which can be inferred from tax-

unadjusted cash-flows. Implicitly, this reference discount function does embed a reference
tax rate, however, we do not need to estimate this rate, we only need to estimate the extent
to which the “effective tax rate” of each bond i differs from this reference tax rate. The
effective tax rate of bond i can differ from the reference rate because of tax exemptions,
deferred tax payment, or lower relative tax rate on capital gains.

To make progress, we propose a parametric functional form for zi that captures the three
distinct tax effects: tax exemptions, deferral of tax payments, and the preferential treatment
of capital gains. Our formulation is designed to generalize the approach in the tax-based
bond pricing literature.
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E.2.1 Functional forms of zi

There is an older finance literature that has studied tax distortions in the bond market (e.g.
Robichek and Niebuhr (1970), Colin and Bayer (1970), McCulloch (1975), Cook and Hen-
dershott (1978)).26 This literature uses variants of the following tax-adjusted asset pricing
formula which is meant to represent key features of the tax code:

pt,i =
M∑

j=1
q

(j)
t (1 − τ i)ci + q

(M)
t

[
100 − τ i min{100 − pt,i, 0} − τ cg max{100 − pt,i, 0}

]
(E.4)

where τ i ∈ {τ inc, τ pte, τ fte} is the marginal investor’s income tax on fully taxable, partially
tax exempt, and fully tax exempt bonds, respectively, and τ cg is the long-term capital gains
tax rates on the marginal investor. This formula can be derived by assuming that the bond
is held to maturity, capital losses at maturity are taxed at τ i while capital gains at maturity
are taxed at τ cg, and tax rates are expected to stay fixed over the lifetime of the bond.
The literature has typically used this formula to compute after-tax yields by substituting in
observed bond prices, coupon rates, and various IRS tax rates based on the judgment of the
different researchers. As a result, the resulting after-tax discount function {q

(j)
t }j≥1 becomes

a function of the specific (τ i, τ cg) values and is not directly comparable to estimates in the
modern literature that ignores taxes.

In addition, there are two key reasons why this approach is inappropriate for our sample.
First, the marginal buyer is unknown so the tax rates need to be estimated. However,
formula (E.4) cannot jointly identify the income and capital gains tax rates. Second, the
assumption that all bonds are held to maturity is unrealistic, particularly for samples with
a large fraction of long-term (20+ years) bonds, like our corporate bond sample. This is
because the held-to-maturity assumption tends to overestimate the capital gains advantage
because it exaggerates the discounting of the future capital gains tax.

To address the first issue, we recast formula (E.4) in terms of our general asset pricing
framework (E.3), which allows us to shift focus from the (τ i, τ cg)-dependent after-tax discount
function to a reference discount function {q

(j)
t }j≥1 that can be inferred from tax-unadjusted

cash-flows. In Section E.2.2, we show that (E.4) implies the following tax distortion to the
26Unsurprisingly, this literature was most active during the period from 1955-1985 when the tax distortions

were largest.
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reference curve:

z
(j)
t,i ≈ exp

(1 − 1 − τ inc

1 − τ i

)
ŷt,ij


︸ ︷︷ ︸

conversion from τ i to τ inc

exp
− τ i

(
1 − τ inc

1 − τ i

)
(Mi − j)ŷt,i


︸ ︷︷ ︸

discounting from period M to period j1 +
(

τ i − τ cg

1 − τ i

)
max

{
100 − pt,i

pt,i

, 0
}

︸ ︷︷ ︸
tax correction at period-M (capital gains advantage)

(E.5)

where ŷt,i is bond i’s yield-to-maturity.27 The first term captures the distortion from tax
exemptions, i.e., the relative distortions due to τ i < τ inc. The second term in (E.5) captures
the distortion from deferred (until maturity) tax payment. The third term captures the
distortion from the fact that capital gains are taxed at a lower rate than ordinary income.

To address the second issue, we relax the held-to-maturity assumption by introducing
parameter H (common across bonds) which represents the market’s average holding period.
In Section E.2.3, we show how this assumption generalizes (E.5) to the following formula:

z
(j)
t,i ≈ exp

(1 − 1 − τ inc

1 − τ i

)
ŷt,ij


︸ ︷︷ ︸

conversion from τ i to τ inc

exp
− τ i

(
1 − τ inc

1 − τ i

)(⌈
j

H

⌉
− j

H

)
Hŷt,i


︸ ︷︷ ︸

discounting from period M to period j

(E.6)

1 +
(

τ i − τ cg

1 − τ i

) j∑
s=1

max
{

p̂t+s

p̂t+s−1
− 1, 0

}
︸ ︷︷ ︸

tax correction at period-M (capital gains advantage)

where H is the average holding period (not bond-specific), while p̂Ht,k,i is the period-t “ex-
pectation” of the market price of bond i for the trading date Ht,k := min{kH, Mt,i}. The
terms in (E.6) generalize those in (E.5) to account for cases where the average holding period
is shorter than the bond’s maturity.

Because we are interested in estimating tax pricing distortions rather than tax rates and
holding periods, we combine the relevant terms into coefficients (ηi

t,0, ηt,1, ηt,2) defined by the
following approximation to Equation (E.6):

z
(j)
t,i ≈ exp

 ηi
t,0 · ŷt,i · j︸ ︷︷ ︸

tax exemption

− ηt,1 (Mt,i − j) ŷt,i︸ ︷︷ ︸
deferred taxes

1 + ηt,2

j∑
s=1

max
{

p̂t+s,i

p̂t+s−1,i

− 1, 0
}

︸ ︷︷ ︸
capital gains tax advantage

(E.7)

27This formula is derived under the assumption that the one-period forward rates can be approximated
by the bond’s yield-to-maturity ŷt,i.
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where we have that ηinc
t,0 = 0 for fully taxable bonds and ηpte

t,0 > 0 and ηpte
t,0 > 0 for partially

tax exempt or fully tax exempt bonds respectively. To derive the approximation in Equation
(E.7), we also assumed that (1) capital gains are taxed every period, (2) the “saw tooth”-
like function of j in the deferred taxes term can be approximated with a decreasing linear
function which reaches 0 at j = Mt,i. In addition, we approximate the expected bond price
trajectories with those implied by ŷt,i. These can be derived from the recursion: p̂t,i =
exp(−ŷt,i)(cpi + p̂t+1,i) with boundary conditions p̂t+Mi

= 100, and p̂t,i = pt,i.

E.2.2 Derivation of Equation (E.5)

To derive Equation (E.5), we go in steps. First, following the literature, we present a formula
which ignores tax exemptions, i.e. all bonds face the same ordinary income tax rate τ inc. We
then generalize this formula to accommodate differences in the tax rate on ordinary income.

Without tax exemptions. Robichek and Niebuhr (1970), Colin and Bayer (1970), McCulloch
(1975), Cook (1977), and Cook and Hendershott (1978) study the price implications of
income taxes under the assumption that all bonds are held to maturity. In particular, they
impose the following asset pricing formula

pt,i =
M∑

j=1
q

(j)
t (1 − τ inc)ci + q

(M)
t

[
100 − τ inc min{100 − pt,i, 0} − τ cg max{100 − pt,i, 0}

]

where {q
(j)
t } denotes the after-tax discount function. This formula can be rewritten as

pt,i =
Mi∑
j=1

q
(j)
t (1 − τ inc)ci + q

(Mi)
t

[
100 − τ inc(100 − pt,i) + (τ inc − τ cg) max{100 − pt,i, 0}

]

=
Mi∑
j=1

q
(j)
t (1 − τ inc)ci+

+ q
(Mi)
t pt,i

[
(1 − τ inc)

(
100
pt,i

− 1
)

+ (τ inc − τ cg) max
{

100
pt,i

− 1, 0
}

+ 1
]

This leads to

1 + 1/q
(Mi)
t − 1

1 − τ inc
− τ inc − τ cg

1 − τ inc
max

{
100 − pt,i

pt,i

, 0
}

=
Mi∑
j=1

q
(j)
t

q
(M)
t

ci

pt,i

+ 100
pt,i
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or

pt,i =

 1/q
(Mi)
t

1 + 1/q
(Mi)
t −1

1−τ inc − τ inc−τcg

1−τ inc max
{

100−pt,i

pt,i
, 0
}


︸ ︷︷ ︸
=:wt,i

Mi∑
j=1

q
(j)
t c + q

(Mi)
t 100

 .

where the tax distortion wt,i can be approximated as

wt,i = 1/q
(Mi)
t

1 + 1/q
(Mi)
t −1

1−τ inc − τ inc−τcg

1−τ inc max
{

100−pt,i

pt,i
, 0
}

≈ q
(Mi)
t

q
(Mi)
t

 1
1 − τ inc−τcg

1−τ inc max
{

100−pt,i

pt,i
, 0
}
 .

The tax-adjusted discount function used to discount tax-unadjusted cash-flows can be written
as:28

q̂
(j)
t,i := q

(j)
t wt,i ≈ q

(Mi)
t︸ ︷︷ ︸

discounting

q
(j)
t

q
(Mi)
t︸ ︷︷ ︸

move period-j
payoff to period-M

 1
1 − τ inc−τcg

1−τ inc max
{

100−pt,i

pt,i
, 0
}


︸ ︷︷ ︸
capital gains advantage in period-M dollar

The first term captures discounting from the end-of-holding-period to today using the refer-
ence discount rate. The second term transforms period-j dollars to period-M dollars (end of
holding period) using after-tax discount rate. This captures the value of deferment: unpaid
taxes in period j can be reinvested until the end of the holding period. The third term is an
adjustment due to the fact that the “effective tax rate” on bond i is lower than the reference
tax rate because of the reduced tax rate on capital gains paid at the end of the holding
period.

We can get a formula for the multiplicative distortion zi by breaking up q
(Mi)
t :

q̂
(j)
t,i := q

(j)
t︸︷︷︸

reference

q
(Mi)
t

q
(j)
t

q
(j)
t

q
(Mi)
t︸ ︷︷ ︸

deferment

 1
1 − τ inc−τcg

1−τ inc max
{

100−pt,i

pt,i
, 0
}


︸ ︷︷ ︸
capital gains at end-of-holding-period

The component labeled as “deferment” captures the fact that between period j and the end
28Relative to the after-tax yield curve, qt, tax effects are captured by the wt,i term. The wt,i term is

independent of horizon j and depends solely on the bond’s maturity Mi. The horizon independent tax
effect wt,i tends to underweight longer-horizon payoffs, thereby making q̂

(j)
t more downward-sloping than the

after-tax yield curve q
(j)
t .
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of the holding period M , unpaid taxes can be reinvested, then discounted back to period j

at the reference rate. This term can be rewritten as

q
(Mi)
t

q
(j)
t

q
(j)
t

q
(Mi)
t

=
Mi∏

s=j+1

1 + f
(s−1,s)
t

1 + f
(s−1,s)
t

1−τ inc

 =
Mi∏

s=j+1


(

1 + f
(s−1,s)
t

1−τ inc

)
(1 − τ inc) + τ inc

1 + f
(s−1,s)
t

1−τ inc


=

Mi∏
s=j+1

(
1 − τ inc

(
1 − q

(s−1,s)
t

) )
≈

Mi∏
s=j+1

1 − τ inc

 f
(s−1,s)
t

1 − τ inc


Consequently, relative to the (scale-invariant) reference yield curve, tax distortions can be
summarized by the z

(j)
t,i variable, which is approximately:

z
(j)
t,i ≈

 1
1 + τ inc

1−τ inc

∑Mi
s=j+1 f

(s−1,s)
t


︸ ︷︷ ︸

discounting capital gains/losses to period-j

(
1 +

(
τ inc − τ cg

1 − τ inc

)
max

{
100 − pt,i

pt,i

, 0
})

︸ ︷︷ ︸
capital gains advantage at the end of holding period

The second term is coming from capital gains tax advantage and it depends on the magnitude
of the projected capital gains. This term introduces a downward pressure on the reference
yield curve. When capital gains taxes are paid only at maturity (end of holding period),
it needs to be discounted back to period j < Mi. The first term captures the appropriate
discount factor. The term zi constitutes a bond-specific (negative) level shift relative to the
reference yield curve.

We approximate the discount rate with the bond’s yield-to-maturity:

τ inc
Mi∑

s=j+1

f
(s−1,s)
t

1 − τ inc
≈ τ inc(Mi − j)ŷt,i

As a result, we get the following approximation of zi:

z
(j)
t,i ≈ exp

− τ inc(Mi − j)ŷt,i


︸ ︷︷ ︸

discounting from end-of-holding-period to j

1 +
(

τ inc − τ cg

1 − τ inc

)
max

{
100 − pt,i

pt,i

, 0
}

︸ ︷︷ ︸
tax advantage correction at end-of-holding-period

The reduced form version becomes

z
(j)
t,i ≈ exp

− ηt,1(Mi − j)ŷt,i

1 + ηt,2 max
{

100 − pt,i

pt,i

, 0
}

with ηt,1, ηt,2 ≥ 0.
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With tax exemptions: The formula can be easily generalized to accommodate different income
taxes present in our pre-WW2 government bond sample. Let τ i ∈ {τ pte, τ fe, τ inc} be the
income tax on partially tax exempt, fully tax exempt and fully taxable bonds, respectively.
The above formula of zj

t,i is still relevant, but the discount function relative to which it
represents deviations is now

q(j)
t

:=
j∏

s=1

 1

1 + f
(s−1,s)
t

1−τ i


In other words, the discount function inferred from tax-unadjusted cash-flows become

q̂
(j)
t,i = q(j)

t,i

 1
1 + τ i

1−τ i

∑Mi
s=j+1 f

(s−1,s)
t


︸ ︷︷ ︸

discounting capital gains/losses to period-j

(
1 +

(
τ i − τ cg

1 − τ i

)
max

{
100 − pt,i

pt,i

, 0
})

︸ ︷︷ ︸
capital gains advantage at the end of holding period

To change this to deviations relative from the reference discount function we can introduce
an extra term that captures the “exchange rate” between q(j)

t
and q

(j)
t :

q̂
(j)
t,i = q

(j)
t

(
q(j)

t

q
(j)
t

) (1 +
(

τ i−τcg

1−τ i

)
max

{
100−pt,i

pt,i
, 0
})

(
1 + τ i

1−τ i

∑Mi
s=j+1 f

(s−1,s)
t

)
︸ ︷︷ ︸

=:zt,i

The conversion term can be rewritten as

q(j)
t

q
(j)
t

=
j∏

s=1

1 + 1/q
(s−1,s)
t −1
1−τ inc

1 + 1/q
(s−1,s)
t −1
1−τ i

 =
j∏

s=1

 1 + f
(s−1,s)
t

1−τ inc(
1 + f

(s−1,s)
t

1−τ inc

)
1−τ inc

1−τ i + τ inc−τ i

1−τ i


= 1∏j

s=1

(
1 −

(
τ inc−τ i

1−τ i

)
(1 − q

(s−1,s)
t )

) ≈ 1

1 −
(

τ inc−τ i

1−τ i

)∑j
s=1

f
(s−1,s)
t

1−τ inc
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So the distortion relative to the reference discount function becomes approximately:

z
(j)
t,i ≈

 1

1 −
(

τ inc−τ i

1−τ i

)∑j
s=1

f
(s−1,s)
t

1−τ inc


︸ ︷︷ ︸

conversion to reference tax rate

 1
1 + τ i

1−τ i

∑Mi
s=j+1 f

(s−1,s)
t


︸ ︷︷ ︸

discounting capital gains/losses to period-j(
1 +

(
τ i − τ cg

1 − τ i

)
max

{
100 − pt,i

pt,i

, 0
})

︸ ︷︷ ︸
capital gains advantage at the end of holding period

As a result, we get the following approximation of zi:

z
(j)
t,i ≈ exp

ŷt,ij

 exp
−

(
1 − τ inc

1 − τ i

)
ŷt,ij


︸ ︷︷ ︸

conversion between τ i and τ inc

exp
− τ i

(
1 − τ inc

1 − τ i

)
(Mi − j)ŷt,i


︸ ︷︷ ︸

discounting from period M to period j1 +
(

τ i − τ cg

1 − τ i

)
max

{
100 − pt,i

pt,i

, 0
}

︸ ︷︷ ︸
tax correction at period-M

(E.8)

Note also that q
(j)
t ≈ exp(−ŷtj).

E.2.3 Derivation of Equation (E.6)

Let Mt,i denote bond i’s remaining lifetime in period t. Partition Mt,i into holding periods
of length H, by defining a series of trading dates as follows:

Ht,k = min{kH, Mt,i} k ∈ {0, 1, . . . , Kt,i}, s.t. Kt,i :=
⌈

Mt,i

H

⌉

where ⌈·⌉ denotes the ceiling function and Kt,i is the number of holding periods between
t and t + Mi.29 Note that as H → ∞, we have only two trading dates, Ht,0 = 0 and
Ht,1 = Mt,i, and only one holding period, Kt,i = 1. This case corresponds to the held-to-
maturity assumption. For given horizon j, the start and end dates of the relevant holding
period are

⌊
j

H

⌋
H ≤ j ≤

⌈
j

H

⌉
H

where ⌊·⌋ is the floor function.
29Except for the last holding period (the length of which can be a fraction of H), each holding period has

length H.
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Let p̂t+Ht,k
denote the Ht,k-period-ahead “expected” bond price in period-t, such that

p̂t+Ht,Kt,i
= 100 and for each k ∈ {0, 1, . . . , Kt,i − 1}, p̂t+Ht,k

solves the following recursion:

p̂t+Ht,k
= q

(Ht,k+1)
t

q
(Ht,k)
t

[
(1 − τ i)(c + p̂t+Ht,k+1 − p̂t+Ht,k

) + (τ i − τ cg) max{p̂t+Ht,k+1 − p̂t+Ht,k
, 0} + p̂t+Ht,k

]

Following the same steps as in section E.2.2, the tax-adjusted discount function that can be
used to discount tax-unadjusted cash-flows can be written as:

q̂
(j)
t,i := q

(j)
t

q(j)
t

q
(j)
t︸︷︷︸

conversion

q
(⌈ j

H ⌉H)
t

q
(j)
t

q
(j)
t

q
(⌈ j

H ⌉H)
t︸ ︷︷ ︸

deferment

⌈ j
H ⌉∏

k=1

(
1 +

(
τ i − τ cg

1 − τ i

)
max

{
p̂t+Ht,k

p̂t+Ht,k−1

− 1, 0
})

︸ ︷︷ ︸
capital gains at end-of-holding-period

So the distortion relative to the reference discount function becomes approximately:

z
(j)
t,i ≈

 1

1 −
(

τ inc−τ i

1−τ i

)∑j
s=1

f
(s−1,s)
t

1−τ inc


︸ ︷︷ ︸

conversion to reference tax rate

 1

1 + τ i

1−τ i

∑⌈ j
H ⌉H

s=j+1 f
(s−1,s)
t


︸ ︷︷ ︸

discounting capital gains/losses to period-j

⌈ j
H ⌉∏

k=1

(
1 +

(
τ i − τ cg

1 − τ i

)
max

{
p̂t+Ht,k

p̂t+Ht,k−1

− 1, 0
})

︸ ︷︷ ︸
capital gains advantage at the end of holding period

As a result, we get the following approximation of zi:

z
(j)
t,i ≈ exp

ŷt,ij

 exp
−

(
1 − τ inc

1 − τ i

)
ŷt,ij


︸ ︷︷ ︸

conversion between τ i and τ inc

exp
− τ i

(
1 − τ inc

1 − τ i

)(⌈
j

H

⌉
H − j

)
ŷt,i


︸ ︷︷ ︸

discounting from period M to period j1 +
(

τ i − τ cg

1 − τ i

) ⌈ j
H ⌉∑

k=1
max

{
p̂t+Ht,k

p̂t+Ht,k−1

− 1, 0
}

︸ ︷︷ ︸
tax correction at end-of-holding-period

Two special cases:

• As H → 1 and so the length of the holding period equals the length of the coupon
period, the distortion from deferment goes away (investor pays taxes every period)

• As H → ∞, we get the held-to-maturity case. The formula boils down to (E.8).
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F Additional Details on Yield Curve Estimation

F.1 High Level Strategy

We seek to find yield curves that price one dollar of ordinarily taxed cash flow from a
straight bond at a given time in the future. Accordingly, we need machinery that makes the
appropriate “corrections” from the tax-distorted, option-contaminated space to the option
and tax-adjusted cash flow space. An itemized list of the steps we take to achieve this on a
given date is as follows:

• Obtain the matrix Cpromised
t of promised cash flows for bonds with observed prices Pt.

Cpromised
ij corresponds to the promised cash flow of bond i at time j in the future.

• For every bond i, apply zj
t,i to each cash flow Cpromised

ij , as necessary. Cash flows are
now homogeneous with respect to taxes across bonds in the sample.

• For bonds with embedded options, we insert the option wedge, vt,i, at this stage. This
is done as prescribed in Section 4.1.

• Fit the discount function q. This process is detailed in section F.2 If there are embedded
options in the sample for a given date, a nested minimization is performed to find the
optimal option wedges that minimize the Filipović et al. (2022) objective function given
their closed form q.

F.2 Yield Curve Fitting

We observe prices P1, . . . , PN of N coupon bonds with cash flows summarized in the N × M

matrix C, where M spans the observed maturity spectrum. Entries Ci,j correspond to the
cash flow of bond 1 ≤ i ≤ N occurring at time 1 ≤ j ≤ M in the future. We seek to estimate
the vectorized discount function q(x), where x is the vector spanning the maturity spectrum
M periods in the future. The law of one price dictates that the fitted price of the bond be:

Pi(q) =
M∑

j=1
Ci,jq(xj)

In order to impose structure on the estimates and penalize overfitting, we follow Filipović
et al. (2022) (henceforth FPY-22) and define a measure of smoothness as a weighted average
of the first and second derivatives of the discount function:

||q||α,δ =
(∫ ∞

0

(
δq′(x)2 + (1 − δ)q′′(x)2

)
eαxdx

) 1
2

(F.1)
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for maturity weight parameter α ≥ 0 and shape parameter δ ∈ [0, 1]. δ closer to 0 forces the
curve to be tense, avoiding oscillations, while δ closer to 1 forces the curve to be straight,
avoiding kinks. The weighting term eαx allows the smoothness term to be maturity depen-
dent. Increasing α gives way to more flexibility at the shorter end while enforcing the longer
end of the curve to be smooth.

Define Qα,δ to be the set of twice weakly differentiable discount curves q with finite
smoothness (i.e. the integral in (F.1) is convergent). Then the convex optimization problem
to solve for q is:

min
q∈Qα,δ

M∑
i=1

ωi(Pi − P̂i(q))2 + λ||q||2α,δ (F.2)

for exogenous weights ωi and smoothness parameter λ. FPY-22 show that (F.2) has a unique
close-form solution for any tuple of (λ, α, δ), except in the ill-defined case α = δ = 0. Toward
a discussion on the distributional aspect of the estimator, we may define q to be made up of
an exogenous prior curve p with p(0) = 1 plus a deviation from prior h, q(x) = p(x) + h(x).
The objective function decomposes into the following:

min
h∈Hα,δ

M∑
i=1

ωi

(
Pi − Ci(p(x) + h(x))

)2
+ λ||h||2α,δ (F.3)

where Ci is a row vector of cash flows over the maturity spectrum for bond i, or equiva-
lently, the i-th row of C. H is a reproducing kernel Hilbert space of functions h with initial
condition h(0) = 0. See FPY-22 for further discussion.

Problem (F.3) can be decomposed in terms of β given an M × M kernel matrix K. The
entries of K are determined by the parameters α and δ in five cases. (See FPY-22 for details).
With this formulation, the optimization problem simplifies further to:

min
β

M∑
i=1

ωi (Pi − Cip(x) − CiKβ)2 + λβT Kβ

which emits a unique solution:

β̂ = CT
(
CKCT + Λ

)−1
(P − Cp(x))

where P is the vector of observed prices and Λ is defined by:

Λ = diag
( λ

ω1
, . . . ,

λ

ωM

)

77



The fitted discount function q̂(x) is therefore

q̂(x) = p(x) + Kβ̂

We obtain a fitted zero-coupon yield curve, which we denote ŷ(x), by taking;

ŷ(x) = − log (q̂(x)) /x

To summarize the estimation process, we obtain a flexible closed-form estimator assuming
that the estimated discount function is twice weakly differentiable and obeys some level of
smoothness for a given tuple (λ, α, δ). To choose an optimal tuple, we adopt the same cross-
validation strategy as FPY-22, discussed in Section 3.2 of their paper. This ensures that the
parameters we choose best minimize the out-of-sample error.

F.3 Distributional Aspects

A feature of the Kernel Ridge estimator is that assuming a normally distributed prior curve,
we obtain a normally distributed posterior distribution for the estimated curve q̂. Specifically,
assume a Gaussian distribution for q:

q(x) ∼ N (p(x), sK)

emits a normal posterior distribution with mean function m and covariance function v for
scalars y, z:

mpost(z) = p(z) + k(z, xT)β̂

vpost(y, z) = s

(
k(y, z) − k(y, xT)CT (CKCT + Λ)−1Ck(x, z)

)

where k(y, z) = Kyz and we assume that the price errors have variance Σϵ = Λ. We follow
FPY-22 and set s to be:

s = 1
M

(P − Cp(x))T (CKCT + Λ)−1(P − Cp(x))

which maximizes the prior log-likelihood function of s given observed prices P . We can
therefore easily obtain confidence bounds on the fitted discount function q̂. The posterior
distribution provides additional information on extrapolated discount functions during pe-
riods with only short-term bonds outstanding. As expected, the confidence intervals tend
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to expand dramatically as we extrapolate past the maximum observed maturity in a given
period.

G Additional Results on Yield Curve Estimates

In this section, we describe the key outputs from our estimation: the highest-grade corporate
bond yield curve and the Treasury yield curve for the period 1860-2024.

G.1 Highest-Grade Corporate Bond Yield Curves

The top panel of Figure 21 depicts selected long-term nominal yields on high-grade US
corporate bonds. The solid black line represents the median of our 20-year zero-coupon
yield estimates. Bands around the posterior median depict the 90% interquantile range.
Between 1860-1900, long-term high-grade corporate yields trended downward from around
8% to around 4% (the “great bond bull market”), then climbed slowly back to 5% by World
War I. During the war and the subsequent 1920 recession long-term corporate yields reached
more than 7% before they began their renewed downward decline (interrupted briefly by the
Great Depression). During World War II and the 1950s, the 20-year high-grade corporate
yield exhibited surprising stability up until the late 1960s when, in tandem with increasing
inflation, it reached its peak of 18% during the 1981-1982 recession.

The blue dashed line in the top panel of Figure 21 depicts the high-grade railroad bond
index from Macaulay (1938) computed as the average yield-to-maturity on selected long-
term bonds issued by reputable railroad companies between 1857-1937. The red solid line
is Moody’s Seasoned AAA Corporate Bond Yield index computed as the average yield-to-
maturity on bonds with maturity 20 years and above. This index is available from 1919
onward. While yields-to-maturity are different from the notion of a zero-coupon yield, we
find it reassuring that our estimates broadly align with Macaulay’s high-grade railroad and
Moody’s AAA indexes.30

One of the main advantages of estimating the whole yield curve is to observe shorter
maturity private borrowing costs. The middle panel of Figure 21 depicts our posterior median
estimates of the 10-year and 2-year zero-coupon yields on high-grade corporate bonds. The
bottom panel shows the corresponding spread. Evidently, short- and medium-term yields
follow the same trend as the 20-year yield, but they are more volatile, especially in the post
WWII period. Before the 1980s, the spread between the 10-year and 2-year zero-coupon

30Yield-to-maturity is computed under the assumption of a flat yield curve. In this sense, yield-to-maturity
of a particular bond can be considered as the weighted average of zero-coupon yields with the bond’s cash-
flows acting as weights.
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Figure 21: Highest-grade Nominal Corporate Zero-Coupon Yields 1860-2024

Top panel depicts our posterior median estimate of the 20-year high-grade corporate zero-coupon yield
(black). The blue dashed line depicts the High Grade Railroad Bond Index from Macaulay (1938). The red
solid line is Moody’s Seasoned AAA bond index. Middle panel depicts posterior median estimates of the
10- (black) and 2-year (orange) high-grade corporate yields. Bottom panel depicts the spread between the
10-year and 2-year yields. The light gray intervals depict NBER recessions.
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yields is close to zero, suggesting that for about 100 years, the average yield curve on high-
grade corporate bonds was flat on average.

G.2 Treasury Yield Curves

In previous work, we estimated historical zero-coupon yield curves on US Treasurys from
1790-1933 (see Payne et al. (2025)). For this paper, we extend our estimation to 1934-2024
and make the adjustments for taxes and embedded options described in Section 4 to provide
a consistent comparison to the corporate yield curve. Here we explore these estimates. In
subsection G.2, we highlight importance of adjusting for the flower bonds. In subsection
G.2.1 we then discuss the overall time series for the Treasury yield curve.

G.2.1 Treasury Yields

It is instructive to see the extent to which the Treasury and corporate yield curves co-move
with each other. The top panel of Figure 22 depicts the 10-year highest-grade corporate yield
against the 10-year zero-coupon Treasury yields. Evidently, the two yields follow similar
trend dynamics, but long-term Treasury yields are persistently lower than highest-grade
corporate yields throughout our sample. In addition, despite the similar trend, short- and
medium-term fluctuations of the two yield curves around their respective trends are very
different in the early part of the sample. We can see this reflected in the middle and bottom
panels of Figure 22. The middle panel depicts yield curve slopes defined as the spreads
between the 10 year and 2 year zero-coupon yields on highest-grade corporate bonds (black)
and on US Treasurys (red). The bottom panel shows the 10 year centered rolling correlation
between the long end of the yield curves (green) and the 2-year yields (dashed orange). The
corporate and Treasury yield curves are only weakly correlated between 1860-1920 and then
became highly synchronized after the 1950s. Despite this convergence, the two yield curves
seemed to decouple during the yield curve control period (1942-1951) and to some extent
during the Great Inflation period.

G.2.2 Modern Treasury Sample

In addition to estimating a longer historical sample of zero-coupon Treasury yield curves, we
estimate yield curves in the modern period which build upon popular estimators. In partic-
ular, within a restricted sample of coupon-bearing bonds without option features since June
1961, the flexibility of the Kernel Ridge estimator accompanied by adjustments for capital
gains tax advantage improves the fit compared to the parametric estimates of Gürkaynak
et al. (2007). We show this in Figure 23 where we plot one-year rolling means and standard

81



0

2

4

6

8

10

12

14 10-year zero-coupon yield of US highest-grade corporate bonds
10-year zero-coupon yield of US treasuries

3

2

1

0

1

2

3

Spread between 10-year and 2-year highest-grade corporate yields
Spread between 10-year and 2-year US Treasury yields (greenback denominated)

1860
1870

1880
1890

1900
1910

1920
1930

1940
1950

1960
1970

1980
1990

2000
2010

2020
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10-year (cenetered) rolling correlation between 10-year zero-coupon yields
10-year (cenetered) rolling correlation between 2-year zero-coupon yields

Figure 22: Difference Between Private and Public Borrowing Costs

Top panel depicts posterior median estimates of the 10-year zero-coupon yields on high-grade corporate
debt (teal) and US Treasurys (black). Middle panel depicts spreads between 10-year and 2-year yields for
highest-grade corporate debt (black) and US Treasurys (red). Bottom panel depicts 10-year (centered)
rolling correlations computed from the monthly series of posterior median estimates of 10-year (green solid)
and 2-year (orange dashed) zero-coupon yields.
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deviations of weighted price errors for the non-option, coupon-bearing bonds used in our
yield curve estimation. Despite our estimator also fitting option bonds and T-Bills, the er-
rors on the coupon-bearing bonds alone are reduced significantly. While our rolling standard
deviation of weighted price errors is generally a few basis points lower than Gürkaynak et al.
(2007), we see the greatest improvement in the 1960s as interest rates rose and investors
priced the capital gains tax advantage of low coupon bonds. At the peak of the capital gains
tax advantage in the late 1960s, the standard deviation of our weighted pricing errors are a
third of Gürkaynak et al. (2007).
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Figure 23: Treasury Yield Fit, Coupon Bonds

Notes: The figure shows one-year rolling means and standard deviations of our estimator’s
(LPSS) weighted price errors (WPE) of non-option, coupon-bearing bonds compared with
the same weighted price errors implied by the parameters from Gürkaynak et al. (2007).

G.2.3 Flower Bonds

In this section we study how the inclusion of flower bonds may affect our baseline yield curve
estimate.31 Ideally, our procedure enables us to extract information about non-callable long-
term “plain vanilla” bonds embedded within flower bonds, thereby allowing to construct a
comprehensive estimate of the term structure of Treasury yields during the 1960s and early
1970s—a period in which only flower bonds are observable at the long end. The left panel of
Figure 24 shows our baseline yield curve estimates in May 1967 when we observe only flower

31We are grateful to Greg Duffee for his insightful suggestions, which inspired this section.
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bonds after 7 years-to-maturity. We compare our baseline fit, which utilizes flower bonds,
to a fully extrapolated fit, where we drop all option bonds (callables and flower bonds). As
shown in the left panel, incorporating flower bonds serves two key purposes. First, it provides
insight into the shape of the yield curve at longer maturities, while the extrapolated estimate
approximates a flat extrapolation anchored to the yield-to-maturity of the longest-maturity
non-callable, non-flower bond. This shows that there is nothing mechanical driving our
long-term bond estimates during this period: the estimator is extracting information about
the embedded straight bond within the flower bond. Second, including the flower bonds
in the estimation halves the standard errors at the long end, which reduces our estimation
uncertainty. This is in part because the flower bonds themselves tend to exhibit a “well
behaved” term structure, despite being distorted by an option.
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Figure 24: Fitting Flower Bonds

The figure compares our baseline estimate of the January 1976 yield curve, in black, compared with a
“sense-check” estimate in light blue, where we exclude non-callable bonds after 7 years-to-maturity, and all
callable bonds. Dots are yields-to-maturity, and the yield curves shown are par yields. We drop bonds
which previously incurred large capital gains.

To further ensure that our estimator captures genuine yield curve information—rather
than the mere influence of embedded options at the long end—we conduct a targeted “sense
check” using periods in which both flower and non-flower bonds are observable at long
maturities. Specifically, we re-estimate the Treasury yield curve for January 1976 using
only non-callable non-flower bonds with maturities under 7 years (even though longer term
non-callable, non-flower bonds exist), supplemented by longer-term flower bonds. We then
compare these estimates to our baseline specification for the same date, which does incorpo-
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rate long-term non-flower bonds, and assess the estimator’s ability to fit these longer-term
non-flower bond yields that were excluded from the restricted sample. The right panel of
Figure 24 presents the baseline yield curve alongside the sense check estimate for January
1976. Three findings stand out:

• The yield curve estimates differ minimally, on the order of approximately 5 basis points
difference between 10 to 20 years to maturity.

• The estimator can fit the flower bonds well. Fitted yields-to-maturity are only a few
basis points off observed yields-to-maturity for all flower bonds.

• The sense check estimator does not take a stand on curvature at the long end. However,
as seen in the right panel of Figure 24, the curvature of the long end of the yield curve,
picked up in our baseline estimate, is well within one standard deviation of our sense
check estimate.

Consequently, even when we do not observe “plain vanilla” long-term bonds, we can still
get a good estimate of the long end of the yield curve just from fitting the flower bonds. This
exercise serves as an out-of-sample confirmation that we can effectively extract information
about the “plain vanilla” yield curve from the flower bonds.

In Figure 25, we show the time-series implications of estimating the yield curve including
flower bonds. In the top panel, we show 10-year par yields estimated on “plain-vanilla”
bonds and 10-year par yields estimated on flower bonds only, not adjusting for the option
component. Before the end of 1965, the two yields are indistinguishable. This implies that
the average long-term government yield index, represented by the red line in Figure 25, is a
good approximation of long-term Treasury yields. However, from 1966 onward, a gap opens
up between the black and green lines as inflation picked up and the flower bond premium
slowly increased.32

Clearly, not adjusting for this gap would introduce downward bias to the fitted yield
curve. The standard approach in the literature (e.g. Gürkaynak et al. (2007)) is to drop all
flower bonds in the sample and extrapolate to longer maturities when appropriate. We show
in the bottom panel of Figure 25 that our baseline estimates which incorporate adjustments
for the flower bond option almost exactly match the estimates of a fully extrapolated esti-
mate, dropping all option bonds. However, during the extrapolation period of 1962-1971,

32Among the outstanding flower bonds, the ones actually purchased because of the estate-tax feature
tended to be the lowest coupon bonds, such as the 3’s of 1995 and the 3-1/2 of 1998, which were selling at
the largest discounts. Evidence of this can be seen in the amount outstanding, with the net decline from
year to year measuring the amount redeemed for estate tax purposes. See Cook (1977).
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Figure 25: Long-term Government Yields of Non-Flower and Flower Bonds

Top panel: The black solid line is posterior median of the 10-year par yield on US Treasurys excluding all
flower bonds from the sample. The green solid line is the posterior median estimate of the 10-year par yield
fitted to flower bonds only. Bands denote 90% posterior interquantile ranges. The red solid line is the
average long-term government yield index (LTGOVTBD).
Bottom panel: The red solid line is the posterior median of the 10-year par yield on US Treasurys from our
baseline estimates. The black line is the posterior median of the 10-year par yield on US Treasurys
excluding callable and flower bonds. Bands denote 90% posterior interquantile ranges.
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it is evident that our baseline standard errors are halved by including adjustments to the
flower bonds as opposed to performing a full extrapolation. This confirms that we can use
information embedded within the flower bonds to estimate long-term yields.

H Additional Details on Asset Pricing in Section 6

H.1 Additional Regressions

To study the co-movement between government debt supply and funding advantage more
systematically, in Table 2 we run KVJ-12 style regressions on the four maturity weighted
funding advantages from Figure 11, and in Table 3 we rerun the regressions from KVJ-12
using our extended dataset. The first column in 3 uses the data from KVJ-12 for their
time period 1925-2007, the second column replicates the KVJ-12 regression using our data,
the third column adds in holding return volatility, and columns four to six study our entire
sample from 1865-2024.

The regressions confirm what can be seen visually in the scatter plots. The maturity
specific regression in Table 3 confirms that the negative elasticity is largest for short-maturity
Treasurys and non-existent for long-maturity Treasurys. For the non-maturity weighted
regressions in Table 3, for the original KVJ-12 sample, once we correct for tax and option
distortions, there is a less pronounced statistical relationship between spreads and quantities.
For our extended sample, column three of Table 3 shows a negative relationship. However,
this relationship weakens once we control for the National Banking Era in columns four and
five, which also have a significantly higher R2. This indicates that the low frequency negative
relationship between quantities spreads in the long sample is almost entirely accounted for
by the change in financial regime. Indeed, if we subtract our estimate for the circulation
privilege that government debt enjoyed from 1865-1918 (approximately 1 percentage point),
then the orange dots would drop down further the relationship.
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Period: 1920-2024 1920-2024 1920-2024 1920-2024
Maturity 0-1 Maturity 1-10 Maturity 10+ Weighted Ave.

(1) (2) (3) (4)
log(Debt/GDP)[0-1 Yrs] -0.526∗∗∗

(0.093)
log(Debt/GDP)[1-10 Yrs] -0.234∗∗∗

(0.040)
log(Debt/GDP)[10+ Yrs] 0.080∗∗∗

(0.030)
log(Debt/GDP)[All] -0.417∗∗∗

(0.072)
Volatility 0.549 0.698∗∗∗ 0.960∗∗∗ 0.648∗∗

(0.616) (0.248) (0.276) (0.323)
Slope 0.384∗∗∗ 0.125∗∗∗ -0.020 0.206∗∗∗

(0.059) (0.025) (0.026) (0.032)
Constant -0.447∗ -0.079 0.718∗∗∗ 0.045

(0.238) (0.099) (0.147) (0.115)
Significance: * p<0.1 ** p<0.05 *** p<0.01
Observations 104 104 104 104
Adjusted R2 0.406 0.346 0.215 0.364

Table 2: Regression Results: Funding Advantage Analysis
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Period: 1925-2007 1925-2007 1865-2024 1865-2024 1865-2024
KVJ LPSS LPSS LPSS LPSS
(1) (2) (3) (4) (5)

log(Debt/GDP)[KVJ] -0.649∗∗∗

(0.089)
log(Debt/GDP)[LPSS] -0.182∗∗∗ -0.438∗∗∗ 0.091

(0.069) (0.052) (0.076)
Volatility 0.779 1.694∗∗∗ 2.354∗∗∗ 1.020∗∗∗ 0.872∗∗∗

(0.508) (0.319) (0.389) (0.260) (0.261)
Slope 0.011

(0.037)
Slope -0.020 0.116∗∗∗ 0.035 0.002

(0.029) (0.040) (0.024) (0.026)
Pre-1920 Dummy 1.231∗∗∗ 1.526∗∗∗

(0.061) (0.167)
Pre-1920 Dummy × log(Debt/GDP) 0.069

(0.091)
Constant 0.164 -0.013 -0.267∗∗ 0.320∗∗∗ 0.474∗∗∗

(0.100) (0.098) (0.125) (0.060) (0.109)
Significance: * p<0.1 ** p<0.05 *** p<0.01
Observations 83 82 157 157 157
Adjusted R2 0.462 0.313 0.433 0.771 0.779

Table 3: Regression Results: Each column regresses the 10-year funding advantage on the listed variables. (1) Replicates the
regression from KVJ-12 using their data for the period 1925–2007. (2) Replicates (1) using our estimated spread and market
value series. (3) Replicates (2) with our full sample. (4) Excludes log(Debt/GDP) and includes a dummy for the end of the
National Banking Era. (5) Includes all controls for the full sample.
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H.2 Estimation Approach

We fit all pricing kernel parameters using indirect inference in the style of Adrian et al. (2013).
We outline the key steps for estimating the corporate pricing kernel below. Throughout, we
let J denote the maximum maturity bond used in the estimation and use hats to refer to
fitted values.

1. Estimate the state space evolution. Fit a VAR-N model (or other time series model)
to estimate the evolution of the state variables:

Xt+1 = µX + ΦXXt + Σϵt+1

Let v̂t := Σ̂ϵ̂t+1 denote the fitted innovations.

2. Fit excess holding period returns. Regress the short corporate rate and excess corporate
bond holding period returns on states and estimated innovations:

rft = δ0 + δT
1 Xt

rx
(j−1)
t+1 = αj−1 + βT

j−1v̂t + γj−1Xt + e
(j−1)
t+1

where rx
(j−1)
t+1 is the holding period return on a j-maturity corporate bond defined by:

rx
(j−1)
t+1 := log

(
q

(j−1)
t+1

)
− log

(
q

(j)
t

)
− rft

and e
(j−1)
t+1 denotes bond maturity specific measurement error, which is assumed to be

i.i.d. with variance σ2. We can stack the excess holding period return regression across
the j and t dimensions to get:

rx = α̂ιT
T + β̂T Σ̂ϵ̂ + γ̂X− + Ê

where α̂, β̂, γ̂, ϵ̂, X−, and Ê are the fitted values of {αj}j≤J , {βj}j≤J , {γj}j≤J ,
{ϵt}t∈[t0,T −1], {Xt}t∈[t0,T −1], and {ej−1

t }j≤J,t∈[t0,T −1] stacked across the appropriate j

and/or t dimensions.

3. Recover kernel parameters. Find the pricing kernel parameters (λ0, λ1) that best equate
the values of (α, β, γ) implied by asset pricing theory with the values from the regression
in the previous step (α̂, β̂, γ̂). Using standard asset pricing results (e.g. see Adrian et al.
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(2013)), this involves solving the set of equations:

α̂ιT
T = βT Σ̂Σ̂T λ0ι

T
T − 0.5(B∗vec(Σ̂Σ̂T ) + σ̂2ιJ)ιT

T

β̂ = β

γ̂ = βT Σ̂Σ̂T λ1

where B∗ = [(β(1)(β(1))′, . . . , β(J)(β(J))′). This implies that:

λ1 = (β̂β̂T Σ̂Σ̂T )−1β̂γ̂

λ0 = (β̂β̂T Σ̂Σ̂T )−1β̂(α̂ + 0.5(B̂∗vec(Σ̂Σ̂T ) + σ̂2ιJ))

4. Recover bond pricing parameters. Finally, set up a recursion for the bond pricing
parameters. Using standard asset pricing results (e.g. see Adrian et al. (2013)), the
bond price takes the form log(q(j)

t ) = Aj + BT
j Xt + u

(j)
t , where (Aj, Bj) satisfy the

recursions:

Aj−1 + BT
j−1µ̂X − Aj + A1 = β̂T

j−1Σ̂Σ̂T λ̂0 − 0.5β̂T
j−1Σ̂Σ̂T β̂j−1 − 0.5σ̂2

BT
j−1Φ̂X − BT

j + BT
1 = β̂T

j−1Σ̂Σ̂T λ̂1

Rearranging we get:

An = Aj−1 + BT
j−1µ̂X + A1 − β̂T

j−1Σ̂Σ̂T λ̂0 + 0.5β̂T
j−1Σ̂Σ̂T β̂n−1 + 0.5σ̂2

BT
n = BT

j−1Φ̂X + BT
1 − β̂T

j−1Σ̂Σ̂T λ̂1

A1 = − δ̂0, B1 = −δ̂1

A0 = 0, B0 = 0

We estimate the wedge Ω parameters an analogous way.

H.3 Yield Curve Fit

In this Subsection we show selected results for the fit of the corporate and Treasury yield
curve asset pricing models. Figure 26 shows the observed and fitted excess returns and yields
for the corporate yield curve. Figure 27 shows the analogous plots for the Treasury yield
curve. Finally, Figure 28 shows the risk factors for Ω.
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Figure 26: Observed and fitted corporate yields at maturities 1 and 10.
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Figure 27: Observed and fitted corporate yields at maturities 1 and 10.
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Figure 28: Normalized risk factors for Ω over time.
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H.4 Additional Proofs

In this section of the Appendix, we derive additional results for the asset pricing model.

Theorem 1. To a first order approximation, the spread takes the form:

χ
(j)
t ≈ 1

j

(
β0 + β1 log

(
θt

yt

)
+ log(ζt)

)
+ 1

j

(
log

(
Et

[
q̃

(j−1)
t+1

])
− log

(
Et

[
q

(j−1)
t+1

]))

+ 1
j

 Cov
[
ξt,t+1, q̃

(j−1)
t+1

]
Et [ξt,t+1]Et

[
q̃

(j−1)
t+1

] −
Cov

[
ξt,t+1, q

(j−1)
t+1

]
Et [ξt,t+1]Et

[
q

(j−1)
t+1

]


Proof. Because Ωt,t+1 is time t adapted it can be taken out of the expectation in the asset
pricing equations. Thus, we have:

q
(j)
t = exp

(
β0 + β1 log

(
θt

yt

)
+ log(ζt)

)
Et

[
ξt,t+1q

(j−1)
t+1

]

= exp
(

β0 + β1 log
(
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yt

)
+ log(ζt)

)
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]
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So, the funding advantage is:
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To a first order approximation, this becomes:
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I Treasury Demand and US Government Market Power

There has been recent interest in finding instruments for US Treasury demand and estimating
the US government’s market power. In this section, we investigate one such instrument that
has been used in the literature: foreign volatility shocks as rotators for US debt demand.

Figure 29 depicts the relationship between the AAA Corporate-Treasury spread and debt
issuance for maturities less than one year (the left panel) and for maturities greater than
one year (the right panel). The red dots depict periods with high foreign volatility while the
blue dots depict periods with low volatility in returns on UK equities. Changes to the shape
of the equilibrium relationship in periods of high volatility have been interpreted as evidence
of rotation in US debt demand (e.g. by Choi et al. (2022)). Contrary to the literature, we
find little evidence that the foreign volatility acts as a rotator, except for very short-term
maturities.

Our findings have implications for estimation of US Treasury market power. Following
Choi et al. (2022), we impose a log linearized government issuance policy rule:

λ log(qb
t Bt/Yt) = log(χt) + log(1 − ξϵ−1

t (σt)) − ωt

where qb
t Bt/Yt is the market value of debt-to-GDP ratio, χt is the AAA Corporate-Treasury

spread, ξ is an indicator function whether debt issuance reacts systematically to elasticity,
ϵ−1

t (σt) is the inverse elasticity, σt ∈ {σL, σH} is foreign volatility, and ωt is an iid policy
shock. We then estimate the price elasticity ϵt in high and low foreign volatility periods
σ ∈ {σL, σH}. Finally, we test if ξ = 1 (debt issuance reacts systematically to elasticity)
or ξ = 0 (debt issuance does not react systematically to elasticity) is a better fit. The
results are shown in Table 4. Contrary to Choi et al. (2022), we find little evidence that
US government issuance reacts systematically to elasticity shocks at maturities greater than
1 year. In other words, using the framework of Choi et al. (2022), our results suggest that
the US hasn’t been exploiting its market power in the bond market for maturities above 1
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Figure 29: Convenience Spread vs Debt/GDP: 1919-2008, Annual, High and Low Foreign
Volatility

year. However, we do find evidence for systematic reaction at maturities < 1 year. Since
inflation and volatility are correlated, this may reflect monetary policy adjustments rather
than exploitation of safe-asset monopoly power.

Cost elasticity λ = 0 λ = 1 λ = 2

< 1 Year to Maturity −2.630∗∗∗ −2.712∗∗∗ −2.281∗∗

1+ Year to Maturity 0.575 −1.439 −1.585

Table 4: Null hypothesis: US debt issuance does not react to elasticity (ξ = 0)
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